• Title/Summary/Keyword: the screen printing method

Search Result 381, Processing Time 0.023 seconds

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application (초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용)

  • Sim, Sang-Bo;Han, Jong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

Characteristics of SnO2 Thick Film Gas Sensors Doped with Catalyst (촉매가 첨가된 SnO2 후막형 가스센서의 특성 연구)

  • Lee, Don-Kyu;Yu, Yoon-Sick;Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.622-626
    • /
    • 2010
  • Cu doped $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $500^{\circ}C$ in air, respectively. Structural properties of $SnO_2$ by X-ray diffraction showed (110), (101) and (211) dominant tetragonal phase. The effects of catalyst Cu in $SnO_2$-based gas sensors were investigated. Sensitivity of $SnO_2$:Cu sensors to 2,000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas was investigated for various Cu concentration. The highest sensitivity to $CO_2$ gas and $H_2S$ gas of Cu doped $SnO_2$ gas sensors was observed at the 8 wt% and 12 wt% Cu concentration, respectively. The improved sensitivity in the Cu doped $SnO_2$ gas sensors was explained by decrease of electron depletion region in Cu and $SnO_2$ junction, and increase of reactive oxygen and surface area in the $SnO_2$.

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Gas Sensing Characteristics of $SnO_{2}(Ca)/Pt$ Thick Film Using Pt Electrode for Hydrocarbon Gases (Pt 전극을 사용한 $SnO_{2}(Ca)/Pt$ 후막소자의 탄화수소계가스에 대한 감응특성)

  • Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.37-44
    • /
    • 1995
  • A coprecipitation method was used for preparing Ca and Pt doped $SnO_{2}$-based material. Crystallite size and specific surface area were investigated by TEM, XRD and BET analysis. $SnO_{2}(Ca)/Pt$ based thick film devices were prepared by a screen printing technique for hydrocarbon gas detecting. Then the electrical and sensing characteristics of devices were investigated. As Ca and Pt addition, the crystal growth of $SnO_{2}$ was suppressed during calcining and sintering, and the sensitivity of $SnO_{2}(Ca)/Pt$ thick film to gas was enhanced. Also any difference in the sensing properties has to be attributed to the Pt and Au electrode. For the 2000 ppm $CH_{4}$, the sensitivity of $SnO_{2}(Ca)/Pt$ thick film devices were about 83% at an operating temperature of $400^{\circ}C$.

  • PDF

Gas sensing characteristics of $LaCoO_3$ thick-films ($LaCoO_3$ 후막의 가스 감지 특성)

  • Shin, Jeong-Ho;Jang, Jae-Young;Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.454-460
    • /
    • 1999
  • $LaCoO_3$ thick-films for gas sensing layers were prepared on alumina substrate by screen printing method. The sensitivities to $C_4H_{10}$, $NH_3$, NO and CO gases were investigated for different heat treatment temperatures of the films. Their structural properties were examined by X-Ray Diffraction measurements and SEM photographs. The sensitivity of $LaCoO_3$ thick-film to CO gas was much higher than those of $C_4H_{10}$, $NH_3$, and NO gases. The optimal heat treatment and operating temperatures were $800^{\circ}C$ and $150^{\circ}C$, respectively. The sensitivities of $LaCoO_3$ thick-films to 500ppm and 1250ppm CO gas were 72% and 95%, respectively.

  • PDF

Fabrication and Gas Sensing Properties of WO$_3$Thick Film Gas Sensor Dependent on Heat-Treatment Condition (소성 조건에 따른 WO$_3$계 후막센서소자의 제조 및 응답특성)

  • 정용근;엄우식;이희수;최성철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • We have fabricated $WO_3$ thick film gas sensor under various firing conditions in order to study gas sensing properties in terms of the variation of microstructure and non-stoichiometric structure of gas sensing layer. $WO_3$ paste mixed homogeneously with organic vehicle was coated by screen printing method on alumina substrate composed of Au electrode and $RuO_2$heater on each side. To change filing condition, sensing materials were fared at 600-$800^{\circ}C$ for 1 hour and refired at $700^{\circ}C$ for 1 hour in the mixtures of $_Ar/O2$gas. In the result of heat-treatment, $WO_3$ gas sensor fared at $700^{\circ}C$ showed best gas sensing properties of 210 gas sensitivity and 2 second response time and the best firing environment was 40-50% of $Ar/O_2$gas.

  • PDF

Fabrication of DMMP gas sensor based on $SnO_2$ (산화주석을 기반으로 한 DMMP 가스센서 제작)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Baek, Won-Woo;Lee, Woo-Suk;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.942-945
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas was dimethylmethylphosphonate($C_3H_9O_3P$, DMMP) that is simulant gas of nerve gas. Sensing material was $SnO_2$ added ${\alpha}-Al_2O_3$ with $4{\sim}20wt.%$ and was physically mixed. And then it was deposited by screen printing method on alumina substrate. Sensor device was consisted of sensing electrode with interdigit(IDT) type in front and heater in back side. Total size of device was $7{\times}10{\times}0.6mm^3$. Crystallite size of fabricated $SnO_2$ were characterized by X-ray diffraction(XRD, Rigaku) and morphology of the $SnO_2$ powders was observed by a scanning electron microscope(SEM, Hitachi). Fabricated sensor was measured as flow type and sensor resistance change was monitored real time using LabVIEW program. The best conditions as added $Al_2O_3$ amounts and operating temperature changes were 4wt.% and $300^{\circ}C$ in DMMP 0.5ppm, respectively. The sensitivity was over 75%. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with ${\pm}3%$ in full scale.

  • PDF

Fabrication and Characteristics of SnO2 Thick Film Devices for Detection of NO2 (NO2 감지용 SnO2 후막소자의 제작 및 특성)

  • Sohn, Jong Rack;Han, Jong Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.332-338
    • /
    • 1997
  • $SnO_2$ as raw material of sensor for $NO_2$ detection was prepared by precipitating $SnCl_4$ solution with aqueous ammonia followed by calcining in air. The characterization of $SnO_2$ was carried out using FT-IR and XRD, and $SnO_2$ thick film sensor was fabricated by screen-printing method. The particle size of $SnO_2$ calcined at higher temperature increased due to the growth of crystalline. $SnO_2$ sensor fabricated by using $SnO_2$ sample calcined at $1000^{\circ}C$ followed by heat treatment at $700^{\circ}C$ exhibited excellent sensing characteristics and selectivity for $NO_2$ gas at the operating temperature of $250^{\circ}C$.

  • PDF

Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP (DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

fabrication of DMMP Thick Film Gas Sensor Based on SnO2 (산화주석을 기반으로 한 DMMP 후막가스센서 제작)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1217-1223
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is dimethyl methyl phosphonate(C$_3$ $H_{9}$ $O_3$P, DMMP) that is simulant gas of nerve gas. Sensing materials were Sn $O_2$ added a-Al$_2$ $O_3$ with 0∼20wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor device was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Total size of device was 7${\times}$10${\times}$0.6㎣. Crystallite size & phase identification and morphology of fabricated Sn $O_2$ powders were analyzed by X-ray diffraction and by a scanning electron microscope, respectively. Fabricated sensor was measured as flow type and resistance change of sensing material was monitored as real time using LabVIEW program. The best sensitivity was 75% at adding 4wt.% $\alpha$-Al$_2$ $O_3$, operating temperature 30$0^{\circ}C$ to DMMP 0.5ppm. Response and recovery time were about 1 and 3min., respectively. Repetition measurement was very good with $\pm$3% in full scale.TEX>$\pm$3% in full scale.