• Title/Summary/Keyword: the rice blast fungus

Search Result 124, Processing Time 0.026 seconds

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Purification and Identification of an Antifungal Agent from Streptomyces sp. KH-614 Antagonistic to Rice Blast Fungus, Pyricularia oryzae

  • Rhee, Ki-Hyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.984-988
    • /
    • 2003
  • The actinomycete strain KH-6l4 possessed strong antifungal activity, especially antagonistic to the rice blast fungus, Pyricularia oryzae. Diaminopimelic acid (DAP) type and morphological and physiological characteristics, examined by scanning electron microscopy (SEM), indicated that KH-614 belonged to the genus Streptomyces. Antifungal agent produced by this strain was found to be most active, when the strain was cultured in the presence of glucose, polypeptone, and yeast extract (PY) medium for 6 days at $27^{\circ}C$. Based on the spectral report data, MS and NMR, the antifungal agent was identified as cyclo(L-leucyl-L-prolyl). According to the antimicrobial activity test measured by minimal inhibitory concentration (MIC), the cyclo(1eu-pro) exhibited the activity against Candida albicans IAM 4905, Mucor ramannianus IAM6218, Rhizoctonia solani IFO 6218, Aspergilus fumigatus ATCC 42202, Glomerella cingulata IFO 9767, Trichophton mentagrophytes ATCC 18749, and Trichophyton rubrum ATCC 44766, the order of MIC values were 50, 12.5, 5, 50, 25, 5, $5\;\mu\textrm{g}/ml$, respectively. Specifically, cyclo(1eu-pro) was one of the most effective elements against Pyricularia oryzae IFO 5994 with the MIC value of $2.5\;\mu\textrm{g}/ml$, thus indicating that cyclo(leu-pro) is a potential antifungal agent.

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim;Song Hee Lee;Junhyun Jeon
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.273-280
    • /
    • 2023
  • The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee;Kim, Yang-Seon;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 2009
  • Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Effect of Different Level of Fertilizers on Blast Disease Occurrence of Tongil-line of Rice (수도(水稻) 통일계(統一系) 품종(品種)의 도열병(稻熱病) 발생(發生)에 미치는 시비수준(施肥水準)의 영향(影響))

  • Kim, Hong-Gi;Park, Jong-Seong
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 1979
  • The present study was attempted to find out the effects of different fertilizer levels on the process and pattern of blast epidemic of Milyang 23 which is a variety belong to Tongil-line of rice and very susceptible to new races of the blast fungus. The results obtained from the study are as follows. In general, the plant become more susceptible to blast with increase of fertilizers applied and there is a close relationship between the incidence of blast and levels of fertilizer. Such a relationship appears more clearly in case of the incidence of leaf blast while it is not so clear in case of the incidence of node blast and neck blast. In spite of low level of fertilizer, both of node and neck blast occur considerably and the difference compared with that of high level of fertilizer is not so great. Therefore, the disease escaping in the node or the neck of panicle by regulation of fertilizer level may be impossible. And also forecasting of the neck blast by estimate of the incidence of leaf blast is very difficult because of discontinuity of the incidence of blast on the leaf and the node.

  • PDF