• Title/Summary/Keyword: the respiratory signal

Search Result 172, Processing Time 0.021 seconds

Platycodon grandiflorum Extracts Exhibits Anti-inflammatory Properties by Down-regulating MAPK Signaling Pathways Lipopolysaccharide-treated RAW264.7 Cells

  • Kim, Hyeon Jin;Jeong, Seong-Yun;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • Platycodon grandiflorum is a medicinal herb that is used to treat pulmonary and respiratory allergic disorders. The objective of this study was to investigate the protective effects of ethyl acetate extract of Platycodon grandiflorum (PGEA) against inflammation and to discern the molecular mechanism of PGEA in lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 macrophage cells. PGEA suppressed the generation of nitric oxide (NO) and the expression of inducible NO synthase induced by LPS in RAW264.7 cells, and inhibited the release of pro-inflammatory cytokines induced by LPS in RAW264.7 cells. Western blot analysis showed that PGEA suppressed LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) but not extracellular signal-regulated kinase and $I{\kappa}-B{\alpha}$ degradation. Inactivation of JNK and p38 was effectively alleviated by PGEA, which subsequently affected the activation of c-Jun and c-Fos, which are the essential components of the activator protein-1 (AP-1) transcription complex. Taken together, the results indicate PGEA suppress the activation of p38, JNK, and AP-1, thereby inhibiting the generation of NO and pro-inflammatory cytokines, which affect the regulation of inflammation. PGEA may be useful for the treatment of various inflammatory diseases.

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Chest Wall Hamartoma in Infancy A case report (흉벽의 간엽세포종(과오종)수술치험 1예 보고)

  • Jo, Hyeon-Min;Kim, Hae-Gyun;Mun, Dong-Seok
    • Journal of Chest Surgery
    • /
    • v.29 no.10
    • /
    • pp.1170-1172
    • /
    • 1996
  • Chest wall hamartoma Is a very rare disease. The female infant was suffered from frequent upper respiratory infection. The chest AP revealed destruction of the ribs and widening of the intercostal space Chest CT demonstrated well-defined solid and cystic extrapleural mass. Chest M Rl revealed high signal and low signal intensities In the mass. In December, 1995, she underwent excision of the mass with partial resection of the ribs and ch st wall reconstruction with thick Cortex patch. The chest wall hamartoma was confirmed with histopathological examination. The postop course was smooth and uneventful.

  • PDF

Development of Computerized Spirometer (Computerized spirometer의 개발)

  • Cha, E.J.;Park, I.S.;Song, C.H.;Kim, D.W.;Goo, Y.S.;Lee, T.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.189-191
    • /
    • 1996
  • Computerized spirometer was developed in a form of proto type system. The system consisted of pneumotachometer, flow measurement unit, fan ventilator unit, and software program. Patient's respiratory flow signal was first converted to corresponding pressure drop signal by a screen type pneumotachometer, sensed by a differential pressure transducer, amplified and low pass filtered, and digitized at a rate of 100 Hz, then fed into a PC thru RS-232C serial port. Customized application software controls data acquisition followed by computation of test parameters. The fan ventilator unit dries and eliminates microorganism in the pneumotachometer after each test. The system performs conventional spirometic tests and manages the test results in a database for retrograde research. The proto type system was fully developed and the commercialized system is currently being built up.

  • PDF

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.

New Measurement Technique of Expiratory Air Flow Rate Using Miniatured Air Chamber (소형 공기챔버를 센서소자로 사용하는 새로운 호식기류 계측기술)

  • Kim, Kyung-Ah;Lee, Jae-Hun;Kim, Goon-Jin;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2004
  • Asthma is one of the important respiratory diseases requiring home self care usually performed by commercialized peak expiratory flow meter (PEFM). However, this simple device can measure only single parameter, PEF, due to its purely mechanical principle, significantly limiting desease management quality. The present study introduced a new expiratory flow measurement technique by miniatured air expansion chamber easily installed within PEFM. Continuous pressure signal obtained from the chamber demonstrated an accurate quadratic relationship with flow. The volume measurement error was $<{\pm}1%$ well within the American Thoracic Society (ATS) criteria of 3%. Important spirometric parameters of FVC, PEF, and FEF25-75% were all accurately estimated with correlation coefficients > 0.95. The present technique obtains continuous expiratory air flow signal, making possible and convenient to perform spirometric test at home. Electronic interface capability would be also useful for remote asthma management.

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Signal Detection of DPP-IV Inhibitors using Spontaneous Adverse Event Reporting System in Korea (자발적 부작용 보고 데이터베이스를 이용한 DPP- IV inhibitor의 약물이상사례 분석)

  • Hyejung Pyo;Tae Young Kim;Su Been Choi;Hyeong Jun Jo;Hae Lee Kang;Jung Sun Kim;Hye Sun Gwak;Ji Min Han
    • Korean Journal of Clinical Pharmacy
    • /
    • v.34 no.2
    • /
    • pp.100-107
    • /
    • 2024
  • Background: The purpose of this study was to detect signals of adverse events (AEs) of DPP-IV inhibitors using the KIDs-Korea Adverse Event Reporting System (KAERS) database. Methods: This study was conducted using AEs reported from January 2009 to December 2018 in the KIDs-KAERS database. For signal detection, disproportionality analysis was performed. Signals of DPP-IV inhibitor that satisfied the data-mining indices of reporting odds ratio (ROR) were detected. Results: Among the total number of 10,364 AEs to all oral hypoglycemic agents, the number of reported AEs related to DPP-IV inhibitors was 1,674. Analysis of reported AEs of DPP-IV inhibitors at the SOC levels showed that Respiratory system disorders were the highest at 4.31 (95% CI 3.01-6.17), followed by Skin and appendages disorders at 2.04 (95% CI 1.74-2.38). When analyzing AEs reported at the PT level, pharyngitis was the highest at 73.90 (95% CI 17.59-310.49), followed by arthralgia at 6.08 (95% CI 2.04-18.11), and coughing at 5.21 (95% CI 2.07-13.15). Conclusions: Based on the result of the study, deeper consideration is required according to the characteristics of the patients in prescribing DPP-IV inhibitors among oral hypoglycemic agents, and continuous monitoring of the occurrence of related Adverse Drug Reactions during administration is also required.

Tumor Necrosis Factor Receptor (TNFR)-associated factor 2 (TRAF2) is not Involved in GM-CSF mRNA Induction and TNF-Mediated Cytotoxicity

  • Kim, Jung-Hyun;Cha, Myung-Hoon;Lee, Tae-Kon;Seung, Hyo-Jun;Park, Choon-Sik;Chung, Il-Yup
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.111-116
    • /
    • 1999
  • Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is known to act as a signal transducer that connects TNFR2 to its downstream effector functions such as proliferation of thymocytes, regulation of gene expression, and cell death. TRAF2 consists of largely two domains, the N-terminal half that contains a signal-emanating region and the C-terminal half that is responsible for binding to the intracellular region of TNFR2. In this study, we examined the possible roles of TRAF2 in granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression and cell death. A truncated mutant of TRAF2 ( 2-263) that contains only a C-terminal half was generated, and transiently transfected to the A549 cell, a human lung cancer cell line, and L929 cell, a murine TNF-sensitive cell line. GM-CSF mRNA was induced in untransfected A540 cells both in dose- and time-dependent manner upon the exposure of TNF. However, neither the full length TRAF2 nor the mutant altered GM-CSF mRNA production regardless of the presence or absence of TNF. Furthermore, neither TRAF2 versions significantly changed the cytotoxic effect of TNF on L929 cells. These data suggest that TRAF2 may not be involved in the signal transduction pathway for GM-CSF gene induction and cell death mediated by TNF.

  • PDF

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.