• Title/Summary/Keyword: the removal of hardness materials

Search Result 46, Processing Time 0.018 seconds

A Study on the ELID Grinding Properties of Single Crystal Sapphire Wafer using Ultrasonic Table (초음파 테이블을 이용한 단결정 사파이어 웨이퍼의 ELID 연삭가공 특성 연구)

  • Hwang, JinHa;Kwak, Tae-Soo;Lee, Deug-Woo;Jung, Myung-Won;Lee, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • Single crystal sapphire being used in high technology industry is a brittle material with a high hardness and excellent physical properties. ELID(Electrolytic In-Process Dressing) grinding technology was applied to material removal machining process of single crystal sapphire wafer. Ultrasonic vibration which added to material using ultrasonic table was adopted to efficient ELID grinding of sapphire materials. The evaluation of the ground surface of single crystal sapphire wafer was carried out by means of surface measuring by using AFM(Atomic Force Microscope), surface roughness tester and optical microscope device. As the results of experiment, it was shown that more efficient grinding was conducted when using ultrasonic table. In case of using #170 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was superior to ELID ground specimen without ultrasonic table. However, In case of using #2000 grinding wheel, surface roughness of ELID ground specimen in using ultrasonic table was inferior to ELID ground specimen without ultrasonic table.

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

Granulation of Artificial Zeolite for the Simultaneous Removal of Nitrogen and Phosphorous from the Wastewater (질소, 인 동시 제거용 입상 인공제올라이트 제조)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.67-71
    • /
    • 1998
  • This study was carried out to granulate artificial zeolite powder that remove ammonium nitrogen and phosphorous simultaneously in wastewater treatment. Optimum water content was required for 30 percent volume to granulate artificial zeolite with 1.7mm diameter and 1~2cm length using granulator. Portland cement could remove much $NH_4{^+}$ and $PO_4{^{3-}}$ from the wastewater than other binding materials. Mixed 33, 25. 20. 16 percent of portland cement to artificial zeolite powder(v/v), cation exchange capacity of the granulars were 66.5, 81.4, 126.8, $151.2cmol^+kg^{-1}$ and hardness of that were 176.1, 24.4, 4.1, $0.4kg\;cm^{-2}$, respectively. Content of portland cement in the granular were related with removal of $PO_4{^{3-}}$ positively and that of $NH_4{^+}$ negatively. Shaked 1g of the granulars that made of portland cement 33 percent with 40ml synthetic wastewater containing $NH_4{^+}$ $1545mgl^{-1}$ and $PO_4{^{3-}}$ $417mgl^{-1}$, 99.4 percent of $NH_4{^+}$ and 90.3 percent of $PO_4{^{3-}}$ were removed simultaneously after 48 hours shaking. The longer shaking, the more $NH_4{^+}$ and $PO_4{^{3-}}$were removed. The artificial zeolite granular had both micropore and macropore that could be useful in the wastewater purification.

  • PDF

WELD REPAIR OF GAS TURBINE HOT END COMPONENTS

  • Chaturvedi, M.C.;Yu, X.H.;Richards, N.L.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.235-243
    • /
    • 2002
  • Ni-base superalloys are used extensively in industry, both in aeroengines and land based turbines. About 60% by weight of most modern gas turbine engine structural components are made of Ni-base superalloys. To satisfy practical demands, the efficiency of gas turbine engines has been steadily and systematically increased by design modifications to handle higher turbine inlet or firing temperatures. However, the increase in operating temperatures has lead to a decrease in the life of components and increase in costs of replacement. Moreover, around 80% of the large frame size industrial/utility gas turbines operating in the world today were installed in the mid-sixties to early seventies and are now 25 to 30 years old. Consequently, there are greater opportunities now to repair and refurbish the older models. Basically, there are two major factors influencing the weldability of the cast alloys: strain-age cracking and liquation cracking. Susceptibility to strain-age cracking is due to the total Ti plus AI content of the alloy; Liquation cracking is due either to the presence of low melting constituents or constitutional liquation of constituents. Though Rene 41 superalloy has 4.5wt.% total Ti and Al content and falls just below the safe limit proposed by Prager et al., controlled grain size and special heat treatments are needed to obtain crack-free welds. Varying heat treatments and filler materials were used in a laboratory study, then the actual welding of service parts was carried out to verity the possibility of crack-tree weld of components fabricated from Rene 41 superalloy. The microstructural observations indicated that there were two kinds of carbides in the FCC matrix. MC carbides were located along the grain boundaries, while M$_{23}$C$_{6}$ carbide was located both inter and intra granularly. Two kinds of filler materials, Rene 41 and Hastelloy X were used to gas tungsten arc weld a patch into the sheet metal, along with varying pre-weld heat treatments. The microstructure, hardness and tensile tests were determined. The service distressed parts were categorized into three classes: with large cracks, with medium cracks and with small or no visible cracks. No significant difference in microstructure among the specimens was observed. Specimens were cut from the corner and the straight edge of the patch repair, away from the corner. The only cracks present were found to be associated with inadequate surface preparation to remove oxidation. Guidelines for oxide removal and the welding procedures developed in the research enabled crack-free welds to be produced.d.

  • PDF

Effect of Electropolishing on Surface Quality of Stamped Leadframe (Stamped Leadframe의 표면 품질에 미치는 전해연마 효과)

  • 남형곤;박진구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • The effect of electropolishing far stamped leadframe on the removal of the edge burr and residual stress relief was examined. The present study showed that the electropolishing could be used for enhanced surface quality of stamped leadframes. The electropolishing was performed at the condition of 60% phosphoric acid electrolyte, 5 ampere of current and 3 cm electrode gap at $70^{\circ}C$ for 2 minutes for Alloy42 type leadframe, and $50^{\circ}C$ for 1.5 minutes for C-194 type leadframe. The FWHM values from X-ray diffraction showed that residual stress of electropolished leadframe recovered to the level of as-received raw materials and surface roughness measured by using AFM tuned out to be improved by 0.079 $\mu\textrm{m}$ and 0.014 $\mu\textrm{m}$ ($R_{rms}$) far alloy 42 and C-194 type leadframes, respectively. The plated thickness using XRF showed the improved uniformity in thickness variation by 0.4~0.5 $\mu\textrm{m}$ and grain growth, which is favorable for interface adhesion, was also observed from the bake test samples. We could certify dimensional stability of leadframe with inspection by means of 3D-topography and hardness measurements.

  • PDF

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF