뷰는 데이타베이스 관리 시스템에서 논리적 데이타 독립성을 지원하기 위한 필수적인 요소이다. 객체지향/객체관계형 데이타베이스의 오브젝트 뷰는 객체지향 개념을 지원해야 하므로 관계형 데이타베이스의 뷰와는 다른 요구 기능을 가진다. 현재 대부분의 상용 객체지향/객체관계형 데이타베이스 관리 시스템에서 오브젝트 뷰의 기능을 일부 지원하고 있지만, 구현 방법에 대해서는 충분히 알려져 있지 않다. 본 논문에서는 객체지향/객체관계형 데이타베이스를 위한 오브젝트 뷰의 구현 방법을 제안하고, 이를 오디세우스 객체관계형 데이타베이스 관리 시스템에 구현한다. 이를 위해 먼저 오브젝트 뷰의 요구 사항을 분석한다. 다음으로, 오브젝트 뷰의 구현을 위해 관계형 데이타베이스에서 뷰의 구현을 위해 사용하는 질의 수정 알고리즘을 확장하는 방법을 제안한다. 다음으로, 제안한 뷰의 기능들을 상용 객체관계형 데이타베이스 관리 시스템의 뷰의 기능들과 비교한다. 비교 결과, 제안한 방법이 기존의 오브젝트 뷰에 비해 객체지향 개념인 객체 식별자, 상속, 메소드, 복합 객체들을 모두 잘 지원함을 보인다. 마지막으로, 확장된 질의 수정 방법을 오디세우스 객체관계형 데이터베이스 관리 시스템에 구현하기 위한 세부 방법들을 제시한다.
This paper presents the efficient algorithms for the pose determination of a circular object with and without a priori knowledge of the object radius. The developed algorithms valid for a circular object are the result of the elaboration of Ma's work [2], which determines the pose of a conic object from two perspective views. First, the geometric constraint of a circular object and its projection on the image plane of a camera is described. The number of perspective views required for the object pose determination with and without a priori knowledge of the object radius is also discussed. Second, with a priori knowledge of the object radius, the pose of a circular object is determined from a single perspective view. The object pose information, expressed by two surface normal vectors and one position vector, is given in a closed form and with no ambiguity. Third, without a priori knowledge of the object radius, the pose of a circular object is determined from two perspective views. While the surface normal vectors are obtained from the first view, the position vector is obtained from the two views.
The modeling components in the object-oriented paradigm are based on the object, not the structured function or procedure. That is, in the past, when one wanted to solve problems, he would describe the solution procedure. However, the object-oriented paradigm includes the concepts that solve problems through interaction between objects. The object-oriented model is constructed by describing the relationship between object to represent the real world. As in object-oriented model the relationships between objects increase, the control of objects caused by their insertions, deletions, and modifications comes to be very complex and difficult. Because the loss of the referential integrity happens and the object reusability is reduced. For these reasons, the necessity of the control of objects and the visualization of the relationships between them is required. In order that we design a database necessary to implement Object Browser that has functionalities to visualize Java objects and to perform the query processing in Java object modeling, in this paper we show the processes for EER modeling on Java object and its transformation into relational database schema. In addition we implement Java Object Parser that parses Java object and inserts the parsed results into the implemented database.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권5호
/
pp.1400-1420
/
2012
Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.
This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.
In this paper, we propose a DRF-based object detection method using the object adaptive patch in the satellite imagery. It is a Discriminative Random Fields (DRF) based work, so the detection is done by labeling to the possible patches in the image. For the feature information of each patch, we use the multi-scale and object adaptive patch and its texton histogram, instead of using the single scale and fixed grid patch. So, we can include contextual layout of texture information around the object. To make object adaptive patch, we use "superpixel lattice" scheme. As a result, each group of labeled patches represents the object or object's presence region. In the experiment, we compare the detection result with a fixed grid scheme and shows our result is more close to the object shape.
Type Object 디자인 패턴은 하나의 클래스가 수많은 하위 클래스를 갖거나, 그 하위 클래스의 개수를 소프트웨어 개발시에 예측할 수 없는 상황을 해결하고자 제시된 패턴이다. 그러나, 이 패턴은 적용력과 여러 장점에도 불구하고 인스턴스를 생성하는 클래스와 그 인스턴스의 실제적 클래스가 분리되어 있고 또한 객체 레퍼런스에 의해서 서로 연관되어 있으므로 이에 대한 관리를 위한 메커니즘과 패턴의 이해에 있어서 많은 복잡성을 갖는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위한 Type Object Class의 설계와 구현을 제시한다. 즉, Type Object 패턴의 Type Class와 Object Class로부터 Type Object Class를 설정하고, 이를 런타임에 생성되고 사용되게 함으로써, 인스턴스들이 객체 지향프로그래밍 언어에서 제공하는 고유의 클래스를 참조하게 되어 별도의 클래스 참조 메커니즘을 가질 필요가 없도록 하였다. 따라서, 별도의 클래스 참조 메커니즘을 개발하는 부담과 이 메커니즘의 동작으로 인한 실행 상의 성능 저하의 문제가 개선되는 효과가 있다.
During system resource improvement process that based on Object-Oriented technology could be affect to the continuous system performance if lack appropriate management and control objects mechanism. This paper proposes a methodology to support continuous system performance and its stability. The adoption is based on Java Container Framework and Collections Framework for object collection. Also includes Software Engineering, Object Migration and Multiple Class Loaders mechanism accommodate to construct Continuous Migration Container (CMC). CMC is a runtime environment provides interfaces for management and control to support upgrading object process. Upgrade object methodology of CMC can be divided into two phase are object equivalence checking and object migration process. Object equivalence checking include object behavior verification and functional conformance verification before object migration process. In addition, CMC use Multiple Class Loaders mechanism to support reload effected classes instead of state transfer in migration process while upgrading object. These operations are crucial for system stability and enhancement efficiency.
Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
한국멀티미디어학회논문지
/
제7권12호
/
pp.1657-1664
/
2004
We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.
This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.