• 제목/요약/키워드: the mandibular first molar

검색결과 383건 처리시간 0.027초

임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT)

  • 허진경;계기성;정재헌
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

편측성으로 설계된 하악 유리단 국소의치에서 직접유지장치의 설계 변화에 따른 광탄성 응력 분석에 관한 연구 (A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE DESIGNED UNILATERALLY WITH DIFFERENT DIRECT RETAINERS)

  • 손홍석;계기성
    • 대한치과보철학회지
    • /
    • 제30권1호
    • /
    • pp.25-42
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from a unilateral distal extention removable partial dentures with five kinds of the direct retainers, that is, the bilaterally designed bar clasp of the cross-arch lingual bar and the unilaterally designed bar clasp, circumferential clasp, mini-Dalbo attachment, and telescope retainer. A photoelastic model for mandible was made of the epoxy resin(PL-1) and hardner (PLH-1) with the acrylic resin teeth used and was coated with plastic cement-1 at the lingual surface of the model, and then five kinds of removable partial dentures were set, A unilateral vertical load of about 16Kg was applied on the first molar and the stress pattern of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained: 1. The conventional removable partial denture with the bilaterally cross arch lingual bar produced the most favorable stress distribution on the residual ridge and supporting structure of abutment teeth than the unilaterally designed removable partial dentures. 2. The unilaterally designed removable partial denture with the bar clasp produced the stress distribution on the residual ridge, except sligtly higher stress concentration on the supporting structure of the abutment teeth, similar to the conventional removable partial denture with the bilaterally designed cross arch lingual bar. 3. On the unilaterally designed removable partial dentures, the bar clasp produced greater stress distribution on the residual ridge and supporting structure of the abutment teeth than the circumferential clasp. 4. On the unilaterally designed removable partial dentures, the mimi-Dalbo attachment produced relatively higher stress concentration on the residual ridge, but produced lesser stress concentration on the supporting structure of the abutment teeth than the other direct retainers. 5. On the unilaterally designed removable partial dentures, the telescope retainer produced uniform stress distribution on the residual ridge, but produced higher stress concentration at the root apex of the terminal abutment tooth than the other direct retainers. 6. On the unilaterally designed removable partial dentures the circumferential clasp and telescope retainer produced slightly higher stress concentration on the residual ridge and supporting structure of the abutment teeth than the bar clasp and mini- Dalbo attachment.

  • PDF

임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load)

  • 장종석;정용태;정재헌
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석 (Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load)

  • 배숙진;정재헌;정승미
    • 구강회복응용과학지
    • /
    • 제19권4호
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

임플란트 고정체의 platform의 크기에 따른 유한요소법적 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO PLATFORM WIDTH OF FIXTURE)

  • 정경민;정재헌;정승미
    • 대한치과보철학회지
    • /
    • 제41권5호
    • /
    • pp.674-688
    • /
    • 2003
  • Statement of Problem : With increasing demand of the implant-supported prosthesis, it is advantageous to use the different platform width of the fixture according to bone quantity and quality of the patients. Purpose : The purpose of this study was to assess the loading distributing characteristics of two implant designs according to each platform width of fixture, under vertical and inclined loading using finite element analysis. Material and method : The two kinds of finite element models were designed according to each platform width of future (4.1mm restorative component x 11.5mm length, 5.0mm wide-diameter restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction, 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction and 200N at the buccal cusp in a 300 transverse direction individually Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. Results : The stresses were concentrated mainly at the cortex in both vertical and oblique load ing but the stresses in the cancellous bone were low in both vertical and oblique loading. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading. Increasing the platform width of the implant fixture decreased the stress in the supporting bone, future and abutment screw. Increased the platform width of fixture decreased the stress in the crown and platform. Conclusion : Conclusively, this investigation provides evidence that the platform width of the implant fixture directly affects periimplant stress. By increasing the platform width of the implant fixture, it showed tendency to decreased the supporting bone, future and screw. But, further clinical studies are necessary to determine the ideal protocol for the successful placement of wide platform implants.

Accuracy of several implant bite registration techniques: an in-vitro pilot study

  • Park, Do-Hyun;Park, Ji-Man;Choi, Jae-Won;Kang, Eun-Sook;Bae, Eun-Bin;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.341-349
    • /
    • 2017
  • PURPOSE. This study evaluated the accuracies of different bite registration techniques for implant-fixed prostheses using three dimensional file analysis. MATERIALS AND METHODS. Implant fixtures were placed on the mandibular right second premolar, and the first and second molar in a polyurethane model. Aluwax (A), Pattern Resin (P), and Blu-Mousse (B) were used as the bite registration materials on the healing abutments (H) or temporary abutments (T). The groups were classified into HA, HP, HB, TA, TP, and TB according to each combination. The group using the bite impression coping was the BC group; impression taking and bite registration were performed simultaneously. After impression and bite taking, the scan bodies were connected to the lab analogs of the casts. These casts were scanned using a model scanner. The distances between two reference points in three-dimensional files were measured in each group. One-way ANOVA and Duncan's test were used at the 5% significance level. RESULTS. The smallest distance discrepancy was observed in the TB group using the temporary abutments. The Blu-Mousse and HP groups showed the largest distance discrepancy. The TB and BC groups showed a lower distance discrepancy than the HP group (P=.001), and there was no significant difference between the groups using the temporary abutments and healing abutments (P>.05). CONCLUSION. Although this study has limitations as an in-vitro investigation, the groups using the temporary abutments to hold the Blu-Mousse record and bite impression coping showed greater accuracy than the group using the healing abutments to hold the pattern resin record.

단일치 임플랜트 지지 보철물에서 고정체와 지대주 나사 직경의 차이에 따른 삼차원 유한요소법적 응력 분석 (THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF SINGLE IMPLANT RESTORATION USING DIFFERENT FIXTURE AND ABUTMENT SCREW DIAMETERS)

  • 권주홍;최민호;김유리;조혜원
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.105-119
    • /
    • 2005
  • Statement of problem. As the effects of the various diameters of fixture and abutment screw on stress distribution was not yet examined, this study focused on the different design of single implant restoration using three dimensional finite element analysis. Purpose. This study was to compare five different fixture-abutment combinations for single implant supported restorations with different fixture and abutment screw diameters. Material of methods. The five kinds of finite element models were designed by 3 diameter fixtures ($\oslash$3.3, 3.75, 5.0 mm) with 3 different abutment screws $\oslash$1.5, 1.7, 2.0 mm). The crown for mandibular first molar was made using UCLA abutment according to Wheeler's anatomy. 244 N was applied at the central fossa with two different loading directions, vertically and obliquely (30$^{\circ}$) and at the buccal cusp vertically. Maximum von Mises stresses were recorded and compared in the supporting bone, crowns, fixtures, and abutment screws. Results. 1. The stresses in supporting bone and implant-abutment structure under oblique loading were greater than those under vertical or offset loading. The stresses under vertical loading were the least among 3 loading conditions regardless of the implant and abutment screw diameters. 2. The stresses in the narrow implants were greater than the wider implants. The narrow implant with narrow abutment screw showed highest stresses in the lingual crest, but the narrow implant with standard abutment screw showed highest stress in abutment screw. 3. The stresses of abutment screws were influenced by the diameter of fixtures and loading conditions. The wide implants showed least difference between two different abutment screw diameters. Conclusions. The wide implants showed lesser stresses than the narrow implants and affected least by the different abutment screw diameters. The narrow implants with standard abutment screw showed highest stresses in the lingual bony crest under oblique loading.

협설만곡치아의 파노라마방사선영상소견에 대한 연구 (A study of the panoramic radiographic images of the buccolingual dilaceration)

  • 김영호;정환석;허경회;이원진;허민석;이삼선;최순철
    • Imaging Science in Dentistry
    • /
    • 제40권1호
    • /
    • pp.39-44
    • /
    • 2010
  • Purpose : We want to identify the appearance of the buccolingual root dilaceration teeth in the panoramic views and specify the characteristics of these teeth. Materials and Methods : One thousand-six patients were examined on the basis of both panoramic and CT image criteria. We diagnosed and excluded certain teeth from the samples; both prosthodontic or pathologic lesion appearing teeth and mesiodistally dilacerated ones. We meticulously discerned buccolingually dilacerated teeth in the CT images and total 48 samples were selected. The degree of severity in dilaceration was standardized by 2 types of criteria. The samples were differentiated into 3 groups and again categorized into six types showing from the panoramic views: irregular view on the root apex area, clear blunt on the root tip, stepping on root tip, double lamina dura or double tip, arrow-target shaped root, bull's eye, normal view. Results : The types of teeth selected from total 48 buccolingual root dilaceration samples were mandibular first and second molar, premolars, canines, and lateral incisors. The direction of dilaceration was an even percentage to each buccal and lingual side for most selected teeth, however, that of both canines and lateral incisors were directed in almost a buccal side. In the panoramic views, the root types of the buccolingually dilacerated teeth were irregular view on the root apex area, clear blunt on the root tip, stepping on root tip and normal types were almost always normal view. The more severity in dilareated degree, the more chances of observation in the panoramic views were clear blunt on the root tip and stepping on root tip. Conclusion : As observed in the shape of stepping on root tip or double lamina dura in the panoramic views, there can be much more probability to diagnose as a buccolingually dilacerated root.

비발치로 치료된 I 급 부정교합의 형태적 특성 (THE MORPHOLOGIC CHARACTERISTICS OF CLASS I, NON-EXTRACTION PATIENTS)

  • 장영일;신수정
    • 대한치과교정학회지
    • /
    • 제28권3호
    • /
    • pp.343-351
    • /
    • 1998
  • 본 연구는 비발치로 치료된 I급 부정교합 환자의 형태적 특성을 알아보고자 시행하였다. 비발치로 치료된 I급 부정교합 환자의 치료전과 치료후 안면형태를 평가하고 이를 교정치료를 받지 않은 정상군과 4개의 제 1소구치를 발거하고 치료한 I 급 부정교합 환자군과 비교하였다. Edgewise appliance와 MEAW를 사용하여 비발치로 치료한 환자로 치료후 비교적 양호한 안모와 교합을 갖는 환자 22명을 대상으로 하였다. 이들의 평균 연령은 14.7세 였고 평균 치료기간은 2.6년이었다 치료전과 치료후의 두부계측방사선 사진에서 32개의 계측점을 사용하여 24항목의 각도와 거리를 측정하였다. Student t-test를 시행하여 비발치군의 치료전과 치료후의 변화, 비발치군과 정상군의 차이, 그리고 비발치군과 발치군의 차이를 비교한 결과($p{\leq}0.05$), 다음의 결론을 얻었다. 1. 비발치로 치료한 I 급 부정교합 환자의 치료전 ODI는 $69.9^{\circ}$, APDI는 $82.1^{\circ}$, CF는$152^{\circ}$, EI는 $152^{\circ}$ 였다. 2. 비발치군의 골격형태는 정상군과 유사하였으나 정상군보다 큰 절치간각을 보였다. 3. 발치군은 비발치군보다 돌출된 안모와 작은 절치간각, 그리고 낮은 EI를 가지고 있었다. 4. 비발치군의 치료전,후 골격형태에는 큰 변화가 없었으나 치료후 상,하악 구치의 직립과 절치간각의 감소를 나타내었다.

  • PDF

The effects of Hydroxyapatite nano-coating implants on healing of surgically created circumferential gap in dogs

  • Chae, Gyung-Joon;Lim, Hyun-Chang;Choi, Jung-Yoo;Chung, Sung-Min;Lee, In-Seop;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.373-384
    • /
    • 2008
  • Purpose: The aim of this study is to compare the healing response of various Hydroxyapatite(HA) coated dental implants by Ion-Beam Assisted Deposition(IBAD) placed in the surgically created circumferential gap in dogs. Materials and methods: In four mongrel dogs, all mandibular premolars and the first molar were extracted. After an 8 weeks healing period, six submerged type implants were placed and the circumferential cylindrical 2mm coronal defects around the implants were made surgically with customized step drills. Groups were divided into six groups : anodized surface, anodized surface with 150nm HA and heat treatment, anodized surface with 300nm HA and heat treatment, anodized surface with 150nm HA and no heat treatment, and anodized surface with 150nm HA, heat treatment and bone graft, anodized surface with bone graft. The dogs were sacrificed following 12 weeks healing period. Specimens were analyzed histologically and histomorphometrically. Results: During the healing period, healing was uneventful and implants were well maintained. Anodized surface with HA coating and $430^{\circ}C$ heat treatment showed an improved regenerative characteristics. Most of the gaps were filled with newly regenerated bone. The implant surface was covered with bone layer as base for intensive bone formation and remodeling. In case that graft the alloplastic material to the gaps, most of the coronal gaps were filled with newly formed bone and remaining graft particles. The bone-implant contact and bone density parameters showed similar results with the histological findings. The bone graft group presented the best bone-implant contact value which had statistical significance. Conclusion: Within the scope of this study, nano-scale HA coated dental implants appeared to have significant effect on the development of new bone formation. And additional bone graft is an effective method in overcoming the gaps around the implants.