• 제목/요약/키워드: the kinematic approach

검색결과 218건 처리시간 0.024초

모션 캡처 시스템에 대한 고찰: 임상적 활용 및 운동형상학적 변인 측정 중심으로 (A Review of Motion Capture Systems: Focusing on Clinical Applications and Kinematic Variables)

  • 임우택
    • 한국전문물리치료학회지
    • /
    • 제29권2호
    • /
    • pp.87-93
    • /
    • 2022
  • To solve the pathological problems of the musculoskeletal system based on evidence, a sophisticated analysis of human motion is required. Traditional optical motion capture systems with high validity and reliability have been utilized in clinical practice for a long time. However, expensive equipment and professional technicians are required to construct optical motion capture systems, hence they are used at a limited capacity in clinical settings despite their advantages. The development of information technology has overcome the existing limit and paved the way for constructing a motion capture system that can be operated at a low cost. Recently, with the development of computer vision-based technology and optical markerless tracking technology, webcam-based 3D human motion analysis has become possible, in which the intuitive interface increases the user-friendliness to non-specialists. In addition, unlike conventional optical motion capture, with this approach, it is possible to analyze motions of multiple people at simultaneously. In a non-optical motion capture system, an inertial measurement unit is typically used, which is not significantly different from a conventional optical motion capture system in terms of its validity and reliability. With the development of markerless technology and advent of non-optical motion capture systems, it is a great advantage that human motion analysis is no longer limited to laboratories.

GPS/INS에 의한 외부표정요소 결정에 관한 경험적 연구 (An Experimental Study on the Determination of Exterior Orientation Parameters with GPS/INS)

  • 한상득;조규전;이재원
    • 한국측량학회지
    • /
    • 제22권1호
    • /
    • pp.53-62
    • /
    • 2004
  • 본 본문은 GPS(Global Positioning System)와 IMU(Inertial Measuring Unit)를 연계하여 최소의 지상기준점만으로도 재래식 항공사진측량 방법과 비교하여 정확도의 손실 없이 외부표정요소를 결정할 수 있는 새로운 기법에 대하여 연구하였다. 이러한 GPS/INS 항공사진측량의 실무적용 가능성을 입증하기 위하여 직접 비행실험을 하고 촬영된 대상지역에 대하여 동적 GPS 위치결정의 정확도의 검증 및 재래식 방법과 GPS/IMU에 의한 사진기 준점측량을 실시하여 다양한 방법으로 비교한 결과를 소개하였다.

CAD/CAM/CAE/RP의 동시공학적 적용을 통한 휴머노이드 로봇의 쾌속 개발 (Rapid Development of a Humanoid Robot using Concurrent Implementation of CAD/CAM/CAE and RP)

  • 박근;김영석;김충석;박성호
    • 한국CDE학회논문집
    • /
    • 제12권1호
    • /
    • pp.50-57
    • /
    • 2007
  • In recent years, many robotics researches have been focused on developing human-friendly robots, that is, humanoid biped robots. The researches of humanoid robots include various areas such as hardware development, control of biped locomotion, artificial intelligence, human interaction, etc. The present work concerns the hardware development of a mid-size humanoid robot, BONOBO, focusing on rapid development of outer body parts with integrated application if CAD/CAM/CAE/RP. Most parts are three-dimensionally designed using 3D CAD, and effectively connected with CAE analyses using both kinematic simulation and structural analysis. In order to reduce lead time and investment cost for parts developments, Rapid Prototyping (RP) and CAM are selectively utilized for manufacturing body parts. These master parts are then replicated using the vacuum casting process, from which we can obtain plastic parts repeatedly. Through this integrated approach, the first prototype of BONOBO can be successfully developed with relatively low time and investment costs.

여유 자유도를 갖는 산업용 로봇의 역기구학 해석 및 최적 동작 계획 (Inverse Kinematics Solution and Optimal Motion Planning for Industrial Robots with Redundancy)

  • 이종화;김자영;이지홍;김동혁;임현규;류시현
    • 로봇학회논문지
    • /
    • 제7권1호
    • /
    • pp.35-44
    • /
    • 2012
  • This paper presents a method to optimize motion planning for industrial manipulators with redundancy. For optimal motion planning, first of all, particular inverse kinematic solution is needed to improve efficiency for manipulators with redundancy working in various environments. In this paper, we propose three kinds of methods for solving inverse kinematics problems; numerical and combined approach. Also, we introduce methods for optimal motion planning using potential function considering the order of priority. For efficient movement in industrial settings, this paper presents methods to plan motions by considering colliding obstacles, joint limits, and interference between whole arms. To confirm improved performance of robot applying the proposed algorithms, we use two kinds of robots with redundancy. One is a single arm robot with 7DOF and another is a dual arm robot with 15DOF which consists of left arm, right arm with each 7DOF, and a torso part with 1DOF. The proposed algorithms are verified through several numerical examples as well as by real implementation in robot controllers.

자유 진동 실험을 통한 VRS-RTK 기법을 이용한 골조 구조물의 모니터링 적용성 검토 (Verification on the Application of Monitoring for Frame Structures Using the VRS-RTK Method through the Free Vibration Test)

  • 최세운;박효선;김법렬;이홍민;김유석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.174-182
    • /
    • 2014
  • 건물의 풍진동을 모니터링 하기 위해, 두 개 (이동국과 기준국)의 global positioning system (GPS)에 기반한 종래의 real-time kinematic (RTK) 기법이 널리 적용되고 있다. 그러나 이는 기준국을 위한 공간을 확보하거나 유지 관리하는데 어려움을 겪을 수 있다. 한편, 최근에 하나의 이동국 만을 이용하여 구조물의 움직임을 계측할 수 있는 새로운 virtual reference station (VRS)-RTK 기법이 개발되었으며, 측량 분야에서 널리 사용되고 있다. 본 연구에서는 골조 구조물의 횡방향 구조 응답을 모니터링하기 위한 VRS-RTK 기법의 적용성을 평가하기 위해 단층 골조 모형 (1차 고유진동수 : 1 Hz)과 3층 골조 모형 (1차 고유진동수 : 0.85 Hz)의 자유진동 실험을 수행하였다. GPS에 의해 계측된 변위 및 가속도 응답의 신뢰성을 평가하기 위해, 레이져 변위계와 가속도계가 설치되었으며, 이들로부터 얻은 계측값을 GPS의 계측값과 비교하였다. 또한, 건물의 지속적인 모니터링을 위한 적절한 계측 샘플링 수를 파악하기 위해, 변위 응답에서의 오차가 각기 다른 GPS 샘플링 수 (5, 10, 20 Hz)에서 평가되었다. 실험 결과, GPS으로부터 얻은 변위 및 가속도 응답은 레이져 변위계와 가속계로부터 얻은 응답과 좋은 유사 관계를 가지는 것을 확인하였다. 그리고, GPS 샘플링 수가 증가할수록 변위 오차는 감소하였으며, 3층 실험체에 대해서는 20 Hz의 GPS 샘플링 수로 구조물의 전 모드 성분 (1, 2, 3차 모드)을 검출할 수 있었다.

도마 Lopez 동작의 운동학적 분석: YHS 선수의 성공과 실패 사례 비교 (Kinematical Analysis of Lopez Motion in Horse Vault: Comparison between Successful and Failed Trials)

  • 박철희
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.167-174
    • /
    • 2020
  • 본 연구는 세계적인 선수를 대상으로 남자 기계체조 도마 종목에서 로페즈 기술을 수행했을 때 성공 동작과 실패 동작에 따라 운동학적 차이를 비교 분석하였다. 연구대상은 올림픽 금메달리스트 YHS 선수(나이: 27세, 신장: 160cm, 체중: 53kg중)이였고, 14대의 적외선 고속카메라를 이용하여 도마 동작을 촬영하였다. 원하는 동작 자료획득과 분석을 위해 19mm 반사 마커 26개를 해부학적 주요지점에 부착시켰고, 15개 분절 신체모델을 사용하여 운동학적 변인 계산을 실시하였다. 분석 결과 첫째, 구름판 접촉구간에서 성공 동작의 소요시간이 실패 동작보다 길었으며, 성공 동작은 슬관절의 가동범위를 실패 동작보다 크게 하였다. 둘째, 제1비약에서 성공 동작과 실패 동작의 소요시간은 동일하였다. 성공 동작은 실패 동작보다 짧은 수평이동을 했으며, 높은 수직위치와 도마 착지각을 보였다. 셋째, 도마 접촉구간에서 성공 동작의 소요시간이 실패 동작보다 짧았다. 성공 동작은 도마접촉 순간에 실패 동작보다 좌측 견관절각을 크게 하였다. 넷째, 제2비약에서는 성공 동작의 소요시간이 실패 동작보다 길었으며, 긴 수평이동을 나타냈다. 성공 동작은 도마이륙 순간 우측 견관절각을 크게 하였고, 비틀기 각속도는 빨랐다. 종합하면 YHS 선수가 안정적인 로페즈 기술을 구사하기 위해서는 도마접촉 순간에 높은 자세로 진입하여 도마이륙 순간에서는 우측 견관절각을 크게하여 빠른 비틀기 각속도를 만들어야 한다. 최대높이와 착지 순간에서는 좌·우견관절각을 작게하여 관성모멘트를 줄이고 신체중심을 낮춰야 할 필요가 있다.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.