DOI QR코드

DOI QR Code

Verification on the Application of Monitoring for Frame Structures Using the VRS-RTK Method through the Free Vibration Test

자유 진동 실험을 통한 VRS-RTK 기법을 이용한 골조 구조물의 모니터링 적용성 검토

  • Received : 2013.10.29
  • Accepted : 2013.12.10
  • Published : 2014.01.30

Abstract

To monitor the wind-induced responses of buildings, conventional real-time kinematic (RTK) methods based on two global positioning system (GPS) receivers (e.g., a reference and a rover) are widely applied. However, these methods can encounter problems such as difficulty in securing and maintaining a space for a reference station. With the recently developed virtual reference station (VRS)-RTK approach, the position of a structure can be measured using only a rover receiver. In this study, to evaluate the applicability of VRS-RTK methods in monitoring the lateral structural responses of frame structures, we performed free vibration tests on a one-story frame model (the first natural frequency of 1 Hz) and a three-story frame model (the first natural frequency of 0.85 Hz). To assess the reliability of the displacement and acceleration responses measured by the GPS, we performed a concurrent measurement using laser displacement sensors and an accelerometer. The accelerometer results were consistent with the GPS measurements in terms of the time history and frequency content. Furthermore, to derive an appropriate sampling rate for the continuous monitoring of buildings, the errors in the displacement responses were evaluated at different GPS sampling rates (5, 10, 20 Hz). The results indicate that as the sampling rate increased, the errors in the displacement responses decreased. In addition, in the three-story model, all modal components (first, second, and third modes) could be recorded at a sampling rate of 20 Hz.

건물의 풍진동을 모니터링 하기 위해, 두 개 (이동국과 기준국)의 global positioning system (GPS)에 기반한 종래의 real-time kinematic (RTK) 기법이 널리 적용되고 있다. 그러나 이는 기준국을 위한 공간을 확보하거나 유지 관리하는데 어려움을 겪을 수 있다. 한편, 최근에 하나의 이동국 만을 이용하여 구조물의 움직임을 계측할 수 있는 새로운 virtual reference station (VRS)-RTK 기법이 개발되었으며, 측량 분야에서 널리 사용되고 있다. 본 연구에서는 골조 구조물의 횡방향 구조 응답을 모니터링하기 위한 VRS-RTK 기법의 적용성을 평가하기 위해 단층 골조 모형 (1차 고유진동수 : 1 Hz)과 3층 골조 모형 (1차 고유진동수 : 0.85 Hz)의 자유진동 실험을 수행하였다. GPS에 의해 계측된 변위 및 가속도 응답의 신뢰성을 평가하기 위해, 레이져 변위계와 가속도계가 설치되었으며, 이들로부터 얻은 계측값을 GPS의 계측값과 비교하였다. 또한, 건물의 지속적인 모니터링을 위한 적절한 계측 샘플링 수를 파악하기 위해, 변위 응답에서의 오차가 각기 다른 GPS 샘플링 수 (5, 10, 20 Hz)에서 평가되었다. 실험 결과, GPS으로부터 얻은 변위 및 가속도 응답은 레이져 변위계와 가속계로부터 얻은 응답과 좋은 유사 관계를 가지는 것을 확인하였다. 그리고, GPS 샘플링 수가 증가할수록 변위 오차는 감소하였으며, 3층 실험체에 대해서는 20 Hz의 GPS 샘플링 수로 구조물의 전 모드 성분 (1, 2, 3차 모드)을 검출할 수 있었다.

Keywords

References

  1. Breuer, P., Chmielewski, T., Gorski, P., Konopka, E., and Tarczynski, L. (2008), The Stuttgart TV Tower - displacement of the top caused by the effects of sun and wind, Engineering Structures, 30(10), 2771-2781. https://doi.org/10.1016/j.engstruct.2008.03.008
  2. Choi, S. W., Kim, B. R., Lee, H. M., Kim. Y., and Park, H. S. (2013), A deformed shape monitoring model for building structures based on a 2D laser scanner, Sensors, 13, 6746-6758. https://doi.org/10.3390/s130506746
  3. Dytran. 3192A Accelerometer. Available at: http://www.dytran.com/products/3192A.pdf.
  4. Häkli, P. (2007), The virtual reference station concept in Finland - A case Study, Survey Review, 39(304), 145-155. https://doi.org/10.1179/003962607X165104
  5. Hayes, D. M., Sparks, I. R., and Cranenbroeck J. V. (2006), Core wall survey control system for high rise buildings, Shaping the Change, XXIII FIG Congress, Munich, Germany.
  6. Hu, G. R., Khoo, H. S., Goh, P. C., and Law, C. L. (2003), Development and assessment of GPS virtual reference stations for RTK positioning, Journal of Geodesy, 77(5-6), 292-302. https://doi.org/10.1007/s00190-003-0327-4
  7. Keyence, LB-1000 series instruction manual, Available at : http://www.keyence.com.sg/downloads/laser_displacement07.php.
  8. Kijewski-Correa, T. (2005), GPS: A new tool for structural displacement measurements, APT Bulletin Journal of Preservation Technology, 36(1), 13-18.
  9. Kijewski-Correa, T., Kareem, A., and Kochly, M. (2006), Experimental verification and full-scale deployment of global positioning systems to monitor the dynamic response of tall buildings, Journal of Structural Engineering, 132(8), 1242-1253. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:8(1242)
  10. Kim, J. T., Ryu, Y. S., Cho, H. M., and Stubbs, N. (2003), Damage identification in beam-type structures: frequency-based method vs mode-shape-based method, Engineering Structures, 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  11. Landau, H., Vollath, U., and Chen, X. (2002), Virtual reference station systems, Journal of Global Positioning Systems, 1(2), 137-143. https://doi.org/10.5081/jgps.1.2.137
  12. Lee, J. J., Fukuda, Y., Shinozuka, M., Cho, S., and Yun, C. B. (2007), Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures, Smart Structures and Systems, 3(3), 373-384. https://doi.org/10.12989/sss.2007.3.3.373
  13. Leica, GX 1230, Available at : http://www.leica-geosystemssolutionscenters.com/Site/Instrument%20PDF's/GPS%20Systems/SmartRover%20&%20GPS1200/GPS1200_TechnicalData_en.pdf
  14. Nakamura, S. I. (2000), GPS measurement of wind-induced suspension bridge girder displacements, Journal of Structural Engineering, 126(12), 1413-1419. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:12(1413)
  15. Ni, Y. Q., Xia, Y., Liao, W. Y., and Ko, J. M. (2009), Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower, Structural Control and Health Monitoring, 16(1), 73-98. https://doi.org/10.1002/stc.303
  16. Ogaja, C., Li, X., and Rizos, C. (2007), Advances in structural monitoring with global positioning system technology: 1997-2006, Journal of Applied Geodesy, 1(3), 171-179.
  17. Park, H. S., Lee, H. M., and Adeli, H. (2007), A new approach for health monitoring of structures: Terrestrial laser scanning, Computer-Aided Civil and Infrastructure Engineering, 22(1), 19-30. https://doi.org/10.1111/j.1467-8667.2006.00466.x
  18. Park, H. S., Sohn, H. G., Kim, I. S., and Park, J. H. (2008), Application of GPS to monitoring of wind-induced responses of high-rise buildings, The Structural Design of Tall and Special Buildings, 17(1), 117-132. https://doi.org/10.1002/tal.335
  19. Park, J. W., Lee, J. J., Jung, H. J., and Myung, H. (2010), Vision-based displacement measurement method for high-rise building structures using partitioning approach, NDT&E International, 43(7), 642-647. https://doi.org/10.1016/j.ndteint.2010.06.009
  20. Pesci, A., Loddo, F., Cenni, N., Teza, G., and Casula, G. (2008), Analyzing virtual reference station for GPS surveying: experiments and applications in a test site of the northern Apennines (Italy), Annals of Geophysics, 50(4), 619-631.
  21. Seoul Network RTK System, Available at : http://gnss.seoul.go.kr/intro/intro4_1.php
  22. Tamura, Y., Matsui, M., Pagnini, L. C., Ishibashi, R., and Yoshida, A. (2002), Measurement of wind-induced response of buildings using RTK-GPS, Journal of Wind Engineering and Industrial Aerodynamics, 90(12-15), 1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-8
  23. Yi, T. H., Li, H. N., and Gu, M. (2013), Recent research and application of GPS-based monitoring technology for high-rise structures, Structural Control and Health Monitoring, 20(5), 649-670. https://doi.org/10.1002/stc.1501
  24. Çelebi, M., and Sanli, A. (2002), GPS in pioneering dynamic monitoring of long-period structures, Earthquake Spectra, 18(1), 47-61. https://doi.org/10.1193/1.1461375

Cited by

  1. Development of an Embedded Platform for a Realtime miniSEED/QSCD20 Data Transmission of an Earthquake Accelerometer vol.32, pp.9, 2016, https://doi.org/10.5659/JAIK_SC.2016.32.9.3