• Title/Summary/Keyword: the joint angle

Search Result 1,439, Processing Time 0.025 seconds

Adopting flexibility of the end-plate connections in steel moment frames

  • Ghassemieh, M.;Baei, M.;Kari, A.;Goudarzi, A.;Laefer, D.F.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1215-1237
    • /
    • 2015
  • The majority of connections in moment resisting frames are considered as being fully-rigid. Consequently, the real behavior of the connection, which has some level of flexibility, is ignored. This may result in inaccurate predictions of structural response. This study investigates the influence of flexibility of the extended end-plate connections in the steel moment frames. This is done at two levels. First, the actual micro-behavior of extended end-plate moment connections is explored with respect to joint flexibility. Then, the macro-behavior of frames with end-plate moment connections is investigated using modal, nonlinear static pushover and incremental dynamic analyses. In all models, the P-Delta effects along with material and geometrical nonlinearities were included in the analyses. Results revealed considerable differences between the behavior of the structural frame with connections modeled as fully-rigid versus those when flexibility was incorporated, specifically difference occurred in the natural periods, strength, and maximum inter-story drift angle.

A study of the Sampling Bias Correction on Joint Data from 1D Survey Line (1D 측선에 의한 절리 자료에 대한 편향 보정 기법에 관한 연구)

  • 엄정기
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2003
  • The procedures to correct sampling biases for discontinuity data obtained from 1D survey line(borehole or scanline) is addressed. The Probability of intersection between the survey line and a circular discontinuity is considered, and a correction far orientation bias is developed assuming discontinuities as equivalent circular disks. The correction incorporates the effect of the angle between the direction of survey line and each discontinuity plane belonging to the discontinuity cluster, size of each discontinuity and length of the survey line. A procedure is provided to estimate unbiased discontinuity spacing parameters using the discontinuity spacing data based on the measurements carried out on a finite length of the survey line.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

Study on the Reliability of Electromygraphic Examine according to the Measurement Timing in a Day (근전도 측정시 검사시간에 따른 신뢰도 연구)

  • Woo-Cheon Kee;Byung-Guk Kim;Sook-Hee Choi
    • Journal of Oral Medicine and Pain
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 1989
  • The purpose of this study was to investigate the reliability of electromyographic examination in a day and detect the objective measurement timing of electromyography. 18 normal students who were in dental collage of C national university were selected for this study. They had no symptoms on temporomandibular joint area, no restorations and missing tooth on dentition. Their molar relationship was normal or class I of Angle's classification. Electromyography had been taken every one hour from 9:00 A.M. to 5:00 P.M. in the state of clenching and rest by using Bioelectric processor EM2 interfaced with mandibular kinesiograph K-6 diagnostic system. We compared and analyzed the variances of electromyography values of each subjects. The obtained results were as follows : There were no significant differences on variability of electromyography values in each state clenching and rest. In the aspect of this circumstances, the use of electromyography could be a good objective procedure to diagnose the temporomandibular disorders and to detect the effect to the treatment of temporomandibular disorders at any time in a day from 9:00 A.M. to 5:00 P.M.

  • PDF

Work chain-based inverse kinematics of robot to imitate human motion with Kinect

  • Zhang, Ming;Chen, Jianxin;Wei, Xin;Zhang, Dezhou
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.511-521
    • /
    • 2018
  • The ability to realize human-motion imitation using robots is closely related to developments in the field of artificial intelligence. However, it is not easy to imitate human motions entirely owing to the physical differences between the human body and robots. In this paper, we propose a work chain-based inverse kinematics to enable a robot to imitate the human motion of upper limbs in real time. Two work chains are built on each arm to ensure that there is motion similarity, such as the end effector trajectory and the joint-angle configuration. In addition, a two-phase filter is used to remove the interference and noise, together with a self-collision avoidance scheme to maintain the stability of the robot during the imitation. Experimental results verify the effectiveness of our solution on the humanoid robot Nao-H25 in terms of accuracy and real-time performance.

New Portable System for Measuring the Spasticity of Injury in Central Nervous System (중추신경계 손상에 의한 경직의 이동형 측정 시스템)

  • Song, Chul-Gyu;Seo, Jeong-Hwan;Han, Sang-Hyung;Kim, Keo-Sik;An, Yang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1180-1185
    • /
    • 2009
  • Spasticity is a velocity-dependent stretch reflex disorder of the body motor system developing after the injury of the central nervous system, in which certain muscles are continuously contracted involuntarily. Conventional methods such as the modified Ashworth scale, Spasm frequency scale, pendulum test and isokinetic dynamometer had some disadvantages: limitation in discriminating the increase of resistance, immovable and expensive device, not enough study parameters. Therefore, it is necessary to introduce clinically more useful instrument, which can produce objective data and are more convenient on spasticity measurement. Spasticity measuring methods were reviewed and a new measuring instrument was designed and introduced. The new measuring system is a portable spasticity-measurement system, which encompass various scopes of spasticity-related human signals such as electrophysiologic, kinematic and biomechanical data. Our device was designed in order to measure the joint angle, angular velocity, electromyographic signals and force. We suggest that this new system can diagnose the spasticity of the muscles, objectively.

Gait Recovery Characteristic According to the Injury Aspect of Descending Motor Pathway in a Chronic Stroke Patient: a Case Study

  • Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.6
    • /
    • pp.326-331
    • /
    • 2022
  • Purpose: The stroke patients have gait dysfunction due to impaired neural tracts; corticospinal tract (CST), corticoreticular pathway (CRP), and vestibulospinal tract (VST). In this study, we investigated characteristics of gait pattern according to the injury aspect of the neural track in a stroke patient. Methods: One patient and six control subjects of similar age participated. A 19-year-old male patient with spontaneous intracerebral hemorrhage on right basal ganglia, thalamus, corona radiata and cerebral cortex due to arteriovenous malformation rupture. Diffusion tensor imaging (DTI) data was acquired 21 months after the stroke. Kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 21 months DTI, the CST and CRP in affected hemisphere showed severe injury, in contrast, the VST in affected hemisphere showed intact integrity. Result of gait analysis, walking distance and speed were significantly decreased in a patient. The stance rate of unaffected lower limb, the swing rate of affected lower limb and the duration of double stance significantly increased compared with normal control. The knee and hip joint angle were significantly decreased in a patient. Conclusion: We found recovered independent gait ability may be associated with unimpaired VST in a patient with severe injury in CST and CRP.

Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor (응력특이성계수에 의한 이종 접합재료의 강도평가)

  • Jeong, Nam-Yong;O, Bong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

A Case Report on Osgood-Schlatter Disease Treatment Using Complex Korean Medicine Therapy Including Chuna Therapy (추나 요법을 포함한 복합 한방치료를 이용한 오스굿-슐라터 병의 치료 증례보고)

  • Ji-Won Lee;Youn-Seok Ko;Min-Su Ju
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.17 no.2
    • /
    • pp.51-62
    • /
    • 2022
  • Objectives This case study aimed to investigate the effect of complex Korean medicine therapy and fascia Chuna therapy on Osgood-Schlatter disease. Methods Hospitalization treatment was performed on a 13-year-old Osgood-Schlatter patient who visited Woosuk University Korean Medicine Hospital. The patient complained of pain in both the tibial tuberosity and restriction on the range of knee joint movement. The results were evaluated using the visual analogue scale, knee injury and osteoarthritis outcome score, and range of motion. Results After treatment, knee pain decreased and range of movement angle improved. Conclusions This study suggests that complex Korean medicine therapy, including myofascial Chuna therapy, are effective in improving the range of motion and improving pain in early Osgood-Schlatter disease. The limitation of this study is that the subject of the study was limited to one case. Further clinical studies are required.

Quantitative Evaluation of Spasticity through Separation of Reflex and Mechanical Component Related to Spasticity in Hemiplegic Patients (편마비 환자 경직의 반사적 및 역학적 성분의 분리를 통한 경직의 정량적 평가)

  • Kim, Chul-Seung;Eom, Gwang-Moon;Kim, Ji-Won;Ryu, Je-Chung;Kang, Sung-Jae;Kim, Yo-Han;Park, Byung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.142-149
    • /
    • 2009
  • The aim of this study was to identify both the mechanical and reflex properties associated with spasticity in hemiplegic patients. Ten hemiplegic patients were included in this study. Multiple pendulum tests were executed for each subject, and knee joint angle and EMG of Rectus Femoris muscle were measured. The neuromusculoskeletal system model was developed from generally accepted mechanism and identified through minimization of the error in the model-predicted pendulum trajectories. The identification was successful in terms of small error in simulated kinematics and high sensitivity and precision of simulated torque against EMG activity. The reflex threshold showed significant difference between different clinical scores (p<0.01) and significant negative correlation (r=-0.93) with the EMG duration. It is expected that the suggested method may help in understanding mechanisms underlying spasticity.