• Title/Summary/Keyword: the inspection of the design

Search Result 1,554, Processing Time 0.027 seconds

A Joint Design of Rectifying Inspection Plans and Service Capacities for Multi-Products (복수제품의 선별검사 및 서비스시스템의 설계)

  • Kim, Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.1
    • /
    • pp.97-109
    • /
    • 2010
  • In this paper, we study a joint design problem of sampling inspections and service capacities for multi-products. Products are supplied in batches after rectifying inspections, that is, rejected lots are 100% inspected and defective products are reworked to good ones. When supplied, all defective products are uncovered through total inspection and returned to service. By exploiting the first and second order properties of the objective function, we identify the optimal inspection policies and service capacities for individual products, and develop allocation algorithms to obtain an optimal allocation of the limited total service capacity to products with the small number of computations.

Economic Sampling Inspection Plan for Markov Dependent Production Processes (Markov 종속(從屬) 생산(生産) 공정(工程)에서의 경제적(經濟的) 샘플링 검사(檢査) 계획(計劃))

  • Yu, Jeong-Sang;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 1993
  • Often in a production process, the quality of items is serially dependent. We assume that the quality of items is an attribute which can be classified as good or bad with a Markovian dependence structure. In order to determine sampling inspection plan characteristics such as total inspection cost and average outgoing quality, we design an economic model and illustrate an efficient procedure for design of best inspection plan using graphs based on numerical calculations.

  • PDF

Sequential Design of Inspection Times in Optimally Spaced Inspection

  • Park San-Gun;Kim Hyun-Joong;Lim Jong-Gun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2006
  • The spacing of inspection times in intermittent inspection is of great interest, and several ways for the determination of inspection times have been proposed. In most inspection schemes including equally spaced inspection and optimally spaced inspection, the best inspection times in each inspection scheme depend on the unknown parameter, and we need an initial guess of the unknown parameter for practical use. Thus it is evident that the efficiency of the resulting inspection scheme highly depends on the choice of the initial value. However, since we can obtain some information about the unknown parameter at each inspection, we may use the accumulated information and adjust the next inspection time. In this paper, we study this sequential determination of the inspection times in optimally spaced inspection.

A Study on the Optimal Condition Determination of Laser Scattering Using the Design of Experiment (실험계획법을 이용한 레이저 산란의 최적 조건 결정에 대한 연구)

  • Han, Jae-Chul;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.58-64
    • /
    • 2009
  • In this paper, an inspection mechanism based on laser scattering has been developed for the surface evaluation of infrared cut-off filters, and optimum conditions of laser scattering are determined using the design of experiment. First of all, attributes and influence factors of laser scattering are investigated and then a laser scattering inspection mechanism is newly designed based on analyses of laser scattering parameters. Also, Taguchi method, one of experimental designs, is used for the optimum condition selection of laser scattering parameters and the optimum condition is determined in order to maximize the detection capability of surface defects. Experiments show that the proposed method is useful in a consistent and effective defect detection and can be applied to surface evaluation processes in manufacturing.

Design of Pad Type Air-Bearing for LCD Inspection (LCD 검사 장비용 패드형 에어베어링 설계)

  • Oh, Hyun-Seong;Lee, Sang-Min;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.103-109
    • /
    • 2007
  • LCD (Liquid Crystal Display) is widely used electronic product. It needs too many processes such as PECVD (Plasma Enhanced Vapor Deposition), Sputtering, Photo-lithography, Dry etch. Each process is important but inspection process is more important because most companies emphasis on the six sigma. Recently, LCD inspection system is composed with inlet, inspector, outlet air pads. LCD is inspected on air pad which is shooting air from air hole. This paper studies on pad design of air bearing for LCD inspection to minimize LCD fluctuation. This design is able to reduce fluctuation and then satisfies CCD inspectional range. Also inspection pad needs to adequate stable area.

A Study on the Effect of Design Reliability and Periodic Inspection Cycle on Storage Reliability : Focusing on One-shot Logistic Equipment System (설계신뢰도 및 정기검사주기가 저장신뢰도에 미치는 영향에 관한 연구 : 일회성 군수장비 시스템을 대상으로)

  • Chu, Yeon-Won
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.223-230
    • /
    • 2018
  • In the case of a one-shot logistic equipment system that has been stored for a long time, reliability changes with the passage of time. Therefore, when the time comes to use, the storage reliability of the product is an important quality characteristic, and the existing studies have focused on the research for calculating the optimal period inspection cycle to improve the storage reliability. In this study, we analyzed the influence of the two factors on the storage reliability at the convergence point by analyzing the design reliability as well as the periodic inspection cycle. To do this, we applied the existing Martinez storage reliability model to the missile, a representative product of a one-shot system, and analyzed the quantitative effects of the design reliability and the periodic inspection cycle. From the results of the analysis, it was confirmed that the maintenance of the periodic inspection cycle is more important for the improvement of the storage reliability than the design reliability in the design reliability category of the current product.

Automated quality characterization of 3D printed bone scaffolds

  • Tseng, Tzu-Liang Bill;Chilukuri, Aditya;Park, Sang C.;Kwon, Yongjin James
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner micro-structures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM) (SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구)

  • Song, Donghwan;Oh, Yeong Gwang;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

A Profile Tolerance Usage in GD&T for Precision Manufacturing (정밀제조를 위한 기하공차에서의 윤곽공차 사용)

  • Kim, Kyung-Wook;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.145-149
    • /
    • 2017
  • One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don't have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 최석호;권영주;김재희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF