• Title/Summary/Keyword: the command and control model

Search Result 288, Processing Time 0.027 seconds

A study of design on model following ${\mu}-$synthesis controller for optimal fuel-injection (최적 연료주입 모델 추종형 ${\mu}-$합성 제어기의 설계에 관한 연구)

  • Hwang, Hyun-Joon;Kim, Dong-Wan;Jeong, Ho-Seong;Son, Mu-Hun;Kim, Yeung-Hun;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-ho;Hwang, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we design an optimal model following ${\mu}-$synthesis control system for fuel-injection of diesel engine which has robust performance and satisfactory command tracking performance in spite of uncertainties of the system. To do this, we give gain and dynamics parameters to the weighting functions and apply genetic algorithm with reference model to the optimal determination of the weighting functions that are given by the D-K iteration method which can design ${\mu}-$synthesis controller in the state space. These weighting functions are optimized simultaneously in the search domain which guarantees the robust performance of the system. The ${\mu}-$synthesis control system for fuel-injection designed by the above method has not only the robust performance but also a better command tracking performance than those of the ${\mu}-$synthesis control system designed by trial-and-error method. The effectiveness of this ${\mu}-$synthesis control system for fuel-injection is verified by computer simulation.

  • PDF

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Intelligent Machine Control by Recognition of Literal Commands (문자의 인식을 통한 지능형 머신제어)

  • 박상혁;김종원;조현찬;윤희현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.75-78
    • /
    • 2004
  • In this paper, we suggest machine control method by the Recognition of Literal Commands. This method that we design is human friendly interface to be able to command easy We distinguish words that is related to command directly or not in the Literal Commands. And vague expressions to move machine directly make behaviors by intelligent recognition model. We suggest The Literal Commands control method that is able to obtain more realistic output equivalent to users' desire throgh the literary style commands. The proposed method is experimentally tested by a mobile car using bluetooth module and mobile phone in real time using Literal language commands.

  • PDF

Design of Control Method for ON/OFF Type Actuation System Considering Actuation Limit (구동한계를 고려한 ON/OFF 형식 구동시스템의 구동위치 제어기법 설계)

  • Park, Jungwoo;Park, Iksoo;Park, Dongchang;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2015
  • In this paper, it is accomplished to design a control method for such an actuation system of simplified ON/OFF mechanism with actuation command limit. First of all, based on experimental data, the modeling works for nonlinear/linear actuation dynamics are performed, which are govern by PWM command as a control input. Using the linearized model, a classical PI control method is designed to satisfy the aimed control performance requirements, and a control algorithm is proposed to realize the required control performance in the effective control region through resolving the issue for the PWM command limit which reduces the control performance. Finally, through control simulations, the design method is verified and the corresponding control performance improvement is evaluated.

Power consumption estimation of active RFID system using simulation (시뮬레이션을 이용한 능동형 RFID 시스템의 소비 전력 예측)

  • Lee, Moon-Hyoung;Lee, Hyun-Kyo;Lim, Kyoung-Hee;Lee, Kang-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1569-1580
    • /
    • 2016
  • For the 2.4 GHz active RFID to be successful in the market, one of the requirements is the increased battery life. However, currently we do not have any accurate power consumption estimation method. In this study we develop a simulation model, which can be used to estimate power consumption of tag accurately. Six different simulation models are proposed depending on collision algorithm and query command method. To improve estimation accuracy, we classify tag operating modes as the wake-up receive, UHF receive, sleep timer, tag response, and sleep modes. Power consumption and operating time are identified according to the tag operating mode. Query command for simplifying collection and ack command procedure and newly developed collision control algorithm are used in the simulation. Other performance measures such as throughput, recognition time for multi-tags, tag recognition rate including power consumption are compared with those from the current standard ISO/IEC 18000-7.

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

Adaptive control of gas metal arc welding process

  • Song, Jae-Bok;Hardt, David-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.191-196
    • /
    • 1993
  • Since the welding process is complex and highly nonlinear, it is very difficult to accurately model the process for real-time control. In this paper, a discrete-time transfer function matrix model for gas metal arc welding process is proposed. Although this linearized model is valid only around the operating point of interest, the adaptation mechanism employed in the control system render this model useful over a wide operating range. A multivariable one-step-ahead adaptive control strategy combined with a recursive least-squares method for on-line parameter estimation is implemented in order to achieve the desired weld bead geometries. Command following and disturbance rejection properties of the adaptive control system for both SISO and MIMO cases are investigated by simulation and experiment.

  • PDF

Comparative Analysis and Implications of Command and Control(C2)-related Information Exchange Models (지휘통제 관련 정보교환모델 비교분석 및 시사점)

  • Kim, Kunyoung;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.59-69
    • /
    • 2022
  • For effective battlefield situation awareness and command resolution, information exchange without seams between systems is essential. However, since each system was developed independently for its own purposes, it is necessary to ensure interoperability between systems in order to effectively exchange information. In the case of our military, semantic interoperability is guaranteed by utilizing the common message format for data exchange. However, simply standardizing the data exchange format cannot sufficiently guarantee interoperability between systems. Currently, the U.S. and NATO are developing and utilizing information exchange models to achieve semantic interoperability further than guaranteeing a data exchange format. The information exchange models are the common vocabulary or reference model,which are used to ensure the exchange of information between systems at the content-meaning level. The information exchange models developed and utilized in the United States initially focused on exchanging information directly related to the battlefield situation, but it has developed into the universal form that can be used by whole government departments and related organizations. On the other hand, NATO focused on strictly expressing the concepts necessary to carry out joint military operations among the countries, and the scope of the models was also limited to the concepts related to command and control. In this paper, the background, purpose, and characteristics of the information exchange models developed and used in the United States and NATO were identified, and comparative analysis was performed. Through this, we intend to present implications when developing a Korean information exchange model in the future.

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.