• Title/Summary/Keyword: the analysis of rockfall simulation

Search Result 12, Processing Time 0.02 seconds

Rockfall analysis using simulation techniques- A practical application to, the Mt. Namsan Gyoungju in Korea

  • Lee, Jong-Yoon;Park, Hyeong-Dong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.548-552
    • /
    • 2003
  • During the last few decades, the frequency and distribution of rockfalls have been increased in Korea due the development of rock slope in mountain areas. Although the scale of, falling block of rockfall was small, there were some casualties of lives and loss of properties. In order to reduce damage from rockfall, analysis on rock slope indanger of rockfall should be carried out. Thus, the simulation softwares for rockfall behavior analysis have been introduced. In this study, geotechnical investigation and input data for rockfall simulation are described with the comparison among four commercially available rockfall simulation softwares. Finally, rockfall simulation works are described by exmining a case of inaccessible rock-slope of potential rockfall in Korea.

  • PDF

A Study on the Analysis of Rockfall Simulation using Rockfall Characteristics (낙석 특성을 고려한 낙석 시뮬레이션 해석 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Park, Hyuck-Jin;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.719-724
    • /
    • 2005
  • It conducted an analysis and the research against kinetic energy distribution, velocity and bounce height according to rockfall characteristics using rockfall simulation program in cut-slope. This study considered kinetic energy and bounce height of rockfall for efficient establishment of rockfall protection fencefence that is countermeasure in cut-slope.

  • PDF

A Study on Efficient Prevention of Rockfall using Rockfall Simulation Program (낙석 시뮬레이션 해석을 이용한 효율적인 낙석 방지에 대한 연구)

  • Rhee, Jong-Hyun;Koo, Ho-Bon;Kim, Jin-Hwan;Son, Young-Jin
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.581-584
    • /
    • 2008
  • This study analyzed activity of rockfall and its effect factor by the shape and mass. We performed research on the kinetic energy distribution, velocity and bounce height according to the rockfall characteristics using rockfall simulation program in cut-slope. In addition, this study discussed how to utilize kinetic energy and bounce height of rockfall for efficient establishment of rockfall prevention fence which is a countermeasure to cut-slope.

  • PDF

Characteristics and Energy Absorbing Capacity for New Rockfall Protection Fence (신개념 낙석방지울타리의 특성 및 성능평가)

  • 문영종;정형조;박기준;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.461-466
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ. But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations In the result, it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

Energy Absorbing Capacity for New Rockfall Protection Fence (신개념 낙석방지울타리의 낙석 지지능력 평가)

  • 문영종;정형조;박기준;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.293-298
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ, But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations. In the result it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

Analysis of Magnitude and Behavior of Rockfall for Volcanic Rocks in Ulleung-Do (울릉도 화산암류의 낙석 규모 및 거동 분석)

  • Moon, Gi-Bong;You, Young-Min;Yun, Hyun-Seok;Suh, Young-Ho;Seo, Yong-Seok;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2014
  • It is difficult to predict the magnitude of a rockfall with respect to the shape, volume, and weight of the rock mass, as a rockfall exhibits erratic behavior that depends on the slope geometry, such as the height and dip of the slope. In this study, a field survey was conducted on the slopes of Ulleung-Do, South Korea, where rockfalls frequently occur along coastal roads, to classify the mode of rockfalls and estimate their magnitude. This study also analyzed the effects of rockfall behavior on roads by applying a simulation technique. Agglomerate and trachytic rocks distributed across the study area produce rockfalls in a differential weathering rockfall mode and a toppling rockfall mode. In terms of rockfall weight, trachytic rockfalls were 2-3 times heavier than agglomerate rockfalls. An analysis of rockfall behavior from the simulation indicates that the impact energy on the road exceeded the absorbing energy of a standard rockfall protection fence; however, the rockfall was secured when a ring-net was applied.

Rockfall Impact Analysis of Typical Roadway Using Finite Element Simulation

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.92-96
    • /
    • 2012
  • This study presents a rockfall impact analysis of a typical roadway. Dynamic finite element analyses using ANSYS AUTODYN are conducted to determine the effect of the drop heights (5 m, 10 m) on the damage to a roadway model. The Rockfall is modeled as a spherical shape with a weight of 400 kg, and each drop height is converted to a corresponding impact velocity to save computational time. The roadway model is comprised of an asphalt layer, base layer, sub-base layer, and sub-grade layer. In this paper, the asphalt is modeled using a linear elastic model. The base layer, sub-base layer, and sub-grade layer are modeled using a Mohr-Coulomb model. From the analyses, the effects of the drop height on the damages and stresses are examined and discussed.

Analysis of Rockfall Behavior about Slope Ditch (비탈면 Ditch에 대한 낙석의 거동 해석)

  • Lee, Jundae;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.37-47
    • /
    • 2022
  • Recently, with the establishment of active stabilization measures, large-scale collapse of slopes is decreasing. However, the frequency of rockfalls due to the destabilization of floating stones or boulder within or above the slope has not been decreased significantly. As a measure for stabilizing rockfall and disaster prevention, protection methods such as rockfall barriers and rockfall protection nets are typically applied. However, the approach to catching the rockfall in a catchment area by reducing the energy of the rockfall and changing the rolling condition of the rockfall is relatively insignificant. Therefore, in this study, using a general-purpose rockfall simulation program, the change in the rolling characteristics of rockfall according to the specifications of the ditch installed under the slope was investigated. It is expected that the research results can be used as basic data to determine the specifications of the ditch that can be applied to general roads or trails.

A Study on Evaluation of Slope Stability and Range of Rockfall Hazard of Daljeon-ri Columnar Joint in Pohang, Korea (천연기념물 제415호 포항 달전리 주상절리의 사면안정성 평가 및 낙석 위험 범위 설정)

  • Kim, Jae Hwan;Kang, Mu Hwan;Kong, Dal-Yong;Jwa, Yong-Joo
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.505-515
    • /
    • 2021
  • In this study, we evaluated the slope stability of the Pohang Daljeon-ri columnar joint (Natural Monuments # 415) and calculated the maximum energy, jumping height and moving distance of rockfalls using a simulation. Based on the results, we established the range of rockfall risk. The slopes of the Pohang Daljeon-ri columnar joint have dip directions of 93.79°, 131.99°, 165.54° and 259.84° from left (SW) to right (NE). Furthermore, they have a fan-like shape. The Pohang Daljeon-ri columnar joints are divided into four sections depending on the dip direction. The measurement results of the discontinuous face show that zone 1 is 125, zone 2 is 261, zone 3 is 262, zone 4 is 43. The results of slope stability analyses for each section using a stereographic projection method correspond to the range of planar and toppling failure. Although it is difficult to diagnose the type of failure, risk evaluation of currently falling rocks requires further focus. The maximum movement distance of a rockfall in the simulation was approximately 66 m and the rockfall risk range was the entire area under slope. In addition, it is difficult to forecast where a rock will fall as it rolls in various directions due to topographic factors. Thus, the installation of measures to prevent falling is suggested to secure the stability based on the results of the rockfall simulations and its probabilistic analysis.

Distribution of the Wetness Index and Field Characteristics of Talus Slopes in the Jungsun Area, Gangwon Province (강원도 정선 지역 테일러스 사면의 습윤지수 및 현장 특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Sung-Wook;Choi, Eun-Kyeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.391-399
    • /
    • 2010
  • We performed a hydraulic analysis based on the wetness index of talus slopes in Jungsun, Gangwon province. We estimated the relation between the degree of development of the temporary water system, and talus topography and distribution. We also assessed the distribution of talus based on a map of the wetness index. We divided areas of tallus into stable and unstable types, and estimated the size, distribution and shape-preferred orientation of clasts. We performed numerical simulations of rockfall events to assess the optimum location of rockfall barriers upon talus slopes.