Distribution of the Wetness Index and Field Characteristics of Talus Slopes in the Jungsun Area, Gangwon Province

강원도 정선 지역 테일러스 사면의 습윤지수 및 현장 특성

  • Kim, Seung-Hyun (Geotechnical Engineering & Tunnelling Research Div., Korea Institute of Construction Technology) ;
  • Koo, Ho-Bon (Geotechnical Engineering & Tunnelling Research Div., Korea Institute of Construction Technology) ;
  • Rhee, Jong-Hyun (Geotechnical Engineering & Tunnelling Research Div., Korea Institute of Construction Technology) ;
  • Kim, Sung-Wook (Geo-Information Co. Ltd.) ;
  • Choi, Eun-Kyeong (Geo-Information Co. Ltd.)
  • 김승현 (한국건설기술연구원 지반연구실) ;
  • 구호본 (한국건설기술연구원 지반연구실) ;
  • 이종현 (한국건설기술연구원 지반연구실) ;
  • 김성욱 (주식회사 지아이, 지반정보연구소) ;
  • 최은경 (주식회사 지아이, 지반정보연구소)
  • Received : 2010.11.02
  • Accepted : 2010.12.17
  • Published : 2010.12.31

Abstract

We performed a hydraulic analysis based on the wetness index of talus slopes in Jungsun, Gangwon province. We estimated the relation between the degree of development of the temporary water system, and talus topography and distribution. We also assessed the distribution of talus based on a map of the wetness index. We divided areas of tallus into stable and unstable types, and estimated the size, distribution and shape-preferred orientation of clasts. We performed numerical simulations of rockfall events to assess the optimum location of rockfall barriers upon talus slopes.

강원도 정선 지역에서 테일러스가 발달하는 사면의 습윤지수를 산정하여 강우시 한시적으로 형성되는 수계와 테일러스의 관계를 고찰하였고, 습윤지수 도면을 통하여 테일러스 분포 특성을 파악하였다. 또한 테일러스 사면을 안정형 테일러스와 불안정한 테일러스 형태로 구분하여, 역의 크기, 분포, 퇴적 방향 등의 야외 노출 상태를 기재하였다. 테일러스 사면에 대한 낙석시뮬레이션을 통하여 테일러스 사면에서의 낙석방호시설의 적정 설치 능력 및 위치에 대한 연구를 수행하였다.

Keywords

References

  1. 건설교통부, 2000, 도로안전 설치 및 관리지침, 건설교통부, 76p.
  2. 김승현, 구호본, 백용, 2002, 테일러스의 특성을 이용한 붕괴가능 예측에 대한 기초적 연구- 강원도 정선군 북평읍 숙암리 지내 사면을 중심으로-, 대한토목학회 2002년 학술발표회.
  3. 김지순, 1981, 정산탄전 중부의지질. 지질학회지. 17. 165-176.
  4. Bertran, P.H.B. and Texier, J.P., 1977, Fabric Characteristics of slope deposits, Sedimentology, 44, 1-16.
  5. Beven, K.J. and Kirkby, M.J., 1979, A physical-based variable contributing area model of basin hydrology, Water Resources Publication, 625-668.
  6. Costa-Cabral, M.C. and Burges, S.J. 1994, Digital elevation model networks(DEMON); A model of flow over hillslopes for computation of contributing and dispersal area. Water Resources Research, 30, 1681-1692. https://doi.org/10.1029/93WR03512
  7. Grayson, R. B., Moore, I.D. and McMahon, TA 1992, Physically based hydrologic modeling. 1. A terrain-based for investigative purposes. Water Resources Research., 10, 2639-2658.
  8. Hsu, K.J., 1975, Catastrophic debris streams (sturzstroms) generated by rockfalls, Geol. Soc. Am. Bull., 86,129-140. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2
  9. Kalma, J.D. and Sivaplan, M. 1995, Scale issues in Hydrological modelling. Hohn Wiley & Sons., 1-8.
  10. O'Cailaghan, J.F and Mark, D.M. 1984, The extraction of drainage networks from digital elevation data. Computer Vision Graphics Image Process, 28, 323-344. https://doi.org/10.1016/S0734-189X(84)80011-0
  11. Schweigl, J., Ferretti, C. and Nossing, L., 2003, Geotechnical characterization and rockfall simultion of a slope : a practical case study from South Tyrol(Italy), Engineering Geology, 67, 281-296. https://doi.org/10.1016/S0013-7952(02)00186-2
  12. Vincent, J. and Bernard, E 2000, Comparing the characteristics of rockfall talus and snow avalanche landforms in an Alpine environment using a new methodological approach : Massif des Ecrins, French Alps, Geomorphology, 35, 181-192. https://doi.org/10.1016/S0169-555X(00)00035-0
  13. Wolock, D.M. and Price, C.V., 1994, Effects of digital elevation model map scale and data resolution on a topography-based watershed model, Water Resources Research, 30, 3041-3052. https://doi.org/10.1029/94WR01971