• Title/Summary/Keyword: the Types of Implant

Search Result 414, Processing Time 0.029 seconds

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.

Clinical considerations for appropriate occlusion of implant restorations (임플란트 보철 교합의 임상적 고려 사항)

  • Park, Young-Bum
    • The Journal of the Korean dental association
    • /
    • v.53 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • The appropriate occlusion is one of the most important factors for the long-term success of implant and its restorations. The purpose of this review is to investigate and define occlusal considerations to reduce failure of implant prostheses. The physiological movement of implants is markedly lower than that of natural teeth and they also lack in occlusal sensitivity. Proper occlusal pattern may be assigned to compensate for the biological disadvantages and occlusal contacts must be formed where the cantilever effect is minimized. Moreover, the long-term success of implants after osseointegration can be assured by reducing early occlusal loading to avoid implant overloading and selecting appropriate occlusion material. Occlusal overload was brought by the number and location of occlusal contacts, which are under the clinician's control. The concept of implant occlusion is based on the concepts derived from traditional prosthetics. Moreover, there are few evidence on the concept or design of implant occlusion. Several occlusal design was recommended for implant prosthesis. Mutually protected occlusion, group function occlusion and bilateral balance occlusion was recommended for the specific types of implant restorations. This article reviews proper design of occlusion for implant restoration and offers occlusion strategy clinically.

Transplantation and Replantation Using R.P.I.(ring pin implant) (R.P.I.(ring pin implant)를 응용한 치아의 재식과 이식)

  • Kim, Jae-Chul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.36-44
    • /
    • 1999
  • No one really doubts that the hottest area of dentistry in 21st century would most likely be 'implant'. With the support of a vast amount of research, implant has been successfully and rapidly absorbed into the field of general dentistry including private practitioners. For teeth with hopeless(or refractory) periodontitis or periapical pathosis, with no hesitation most dentists would think extraction as the sole treatment option followed by prosthodontic replacement possibly including implant. Not many dentists would take Trasplantation/Replantation as another treatment option for a particular condition. Dentistry is often more focused on 'Restoration' than 'Preservation' of natural dentition. 'Biologic Implant' is obviously much closer to the concept of 'Preservation'. Many different types of biologic implant system have been introduced to clinical dentistry so far. Many of those have failed to earn reasonable acknowledgement despite of the clinical success they brought. For some reason biologic implant has rather been alienated for long time. RPI(Ring Pin Implant) is designed to improve the prognosis and success rate of transplanted/replanted teeth. RPI is a Ti-based custom made implant system. It is fabricated either by electric casting or milling process. The major feature RPI gas is the 'ring & hole' structure. The hole should be no less than 1mm diameter to allow bone bridge formation thru it. The ring structure and bone bridge formation creates anti-torque activity, which largely increases the 'initial stability' of the transplanted/replanted teeth. It is also reported that RPI is beneficial in the aspect of resisting root resorption following replantation/transplantation procedure.

  • PDF

Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads

  • Kim, Jae-Hoon;Noh, Gunwoo;Hong, Seoung-Jin;Lee, Hyeonjong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.316-321
    • /
    • 2020
  • PURPOSE. The stress distribution and microgap formation on an implant abutment structure was evaluated to determine the relationship between the direction of the load and the stress value. MATERIALS AND METHODS. Two types of three-dimensional models for the mandibular first molar were designed: bone-level implant and tissue-level implant. Each group consisted of an implant, surrounding bone, abutment, screw, and crown. Static finite element analysis was simulated through 200 N of occlusal load and preload at five different load directions: 0, 15, 30, 45, and 60°. The von Mises stress of the abutment and implant was evaluated. Microgap formation on the implant-abutment interface was also analyzed. RESULTS. The stress values in the implant were as follows: 525, 322, 561, 778, and 1150 MPa in a bone level implant, and 254, 182, 259, 364, and 436 MPa in a tissue level implant at a load direction of 0, 15, 30, 45, and 60°, respectively. For microgap formation between the implant and abutment interface, three to seven-micron gaps were observed in the bone level implant under a load at 45 and 60°. In contrast, a three-micron gap was observed in the tissue level implant under a load at only 60°. CONCLUSION. The mean stress of bone-level implant showed 2.2 times higher than that of tissue-level implant. When considering the loading point of occlusal surface and the direction of load, higher stress was noted when the vector was from the center of rotation in the implant prostheses.

Types and Distribution of Implant Dental Clinic Patients in Busan Area (부산지역 치과환자의 임플란트 유형 및 분포 경향)

  • Lee, Mi-Ok;Yoon, Hyun-Seo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.274-282
    • /
    • 2010
  • The purpose of this study was to examine the types of implant, the type of bone graft, periodontal status and the distribution of implant among patients in a region. The subjects in this study were 299 patients who received implant treatment Busan area. The number of their implants was 871 in total. The findings of the study were as follows: As for the type of implant, home-made implants accounted for 83.6 percent, and imported ones represented 16.4 percent. Regarding bone graft, The presence or absence of disease made a significant difference to that($x^2$=14.66, p<.01). As to periodontal status by gender, age and disease, the periodontal state was better among those who were female(y=-2.73, p<.01), who were younger(F=14.20, p<.001) and who had no disease(t=-4.67, p<.001). The intergroup gaps were statistically significant. Concerning the distribution of implant, The distribution of implant was statistically significantly different($x^2$=33.14, p<.01). Age made a statistically significant difference to that($x^2$=74.09, p<.001). As to links between periodontal status and the number of implant, The intergroup gaps were statistically significant($x^2$=38.28, p<.01).

Improved stress analyses of dental systems implant by homogenization technique (균질화기법을 이용한 치과 임플란트 시스템의 응력해석)

  • Koh, Chul-Su;Lee, Man-Sup;Choi, Kui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.263-290
    • /
    • 1997
  • Homogenization technique is employed to investigate the series of stress analyses of mandible for three different types of dental implants. This technique helps to make proper material model of bone and analyze such a non homogeneous structure at the level of individual microstructural unit. The stress analyses with homogenization technique show much higher stress level in the sponge bone, compared to those of conventional FEM. It also manifested that even a minor lateral force results in crucial stresses in the dental implant system and that the macroscale model should take the shape and size after real mandible to produce reasonable solution in the analyses of dental implant systems. The shapes of dental implants simulated in this study are rectangular-cross-sectioned type, hemi-sphere rooted type, and wedge type implant. The stress states of mandible with hemisphere rooted type implant and wedge type implant show similar levels, while those with sectioned rectangular implant results in higher stresses. It is suggested that the distance between the implant tip and cortical bone be kept far enough to prevent stress concentrations in the mandible.

  • PDF

THE COMPARATIVE STUDY OF THERMAL INDUCTIVE EFFECT BETWEEN INTERNAL CONNECTION AND EXTERNAL CONNECTION IMPLANT IN ABUTMENT PREPARATION (구강내에서 임플랜트 지대주 형성 시 내부연결방식과 외부연결방식간의 열전달 효과 비교)

  • Huh, Jung-Bo;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.60-70
    • /
    • 2007
  • Statement of problem: The cement-type abutment would be needed for the reduction of its body in order to correct the axis and to assure occlusal clearance. In the case of intraoral preparation, there is a potential risk that generated heat could be transmitted into the bone-implant interface, where it can cause deterioration of tissues around the implant and failed osseointegration. Purpose: The purpose of this study was to assess the difference of the heat transmitting effect on external and internal connection implant types under various conditions. Material and method: For evaluating the effects of alternating temperature, the thermocoupling wires were attached on 3 areas of the implant fixture surface corresponding to the cervical, middle, and apex. The abutments were removed 1mm in depth horizontally with diamond burs and were polished for 30 seconds at low speed with silicone points using pressure as applied in routine clinical practice. Obtained data were analyzed using Mann-Whitney rank-sum test and Wilcoxon / Kruskal-Wallis Tests. Result: Increased temperature on bone-implant interface was evident without air-water spray coolant both at high speed reduction and low speed polishing (p<.05). But, the difference between connection types was not shown. Conclusion: The reduction procedure of abutment without using proper coolant leads to serious damage of oral tissues around the implant irrespective of external and internal connection type.

Microbiological cleaning and disinfection efficacy of a three-stage ultrasonic processing protocol for CAD-CAM implant abutments

  • Gehrke, Peter;Riebe, Oliver;Fischer, Carsten;Weinhold, Octavio;Dhom, Gunter;Sader, Robert;Weigl, Paul
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.273-284
    • /
    • 2022
  • PURPOSE. Computer-aided design and manufacturing (CAD-CAM) of implant abutments has been shown to result in surface contamination from site-specific milling and fabrication processes. If not removed, these contaminants can have a potentially adverse effect and may trigger inflammatory responses of the peri-implant tissues. The aim of the present study was to evaluate the bacterial disinfection and cleaning efficacy of ultrasonic reprocessing in approved disinfectants to reduce the microbial load of CAD-CAM abutments. MATERIALS AND METHODS. Four different types of custom implant abutments (total N = 32) with eight specimens in each test group (type I to IV) were CAD-CAM manufactured. In two separate contamination experiments, specimens were contaminated with heparinized sheep blood alone and with heparinized sheep blood and the test bacterium Enterococcus faecium. Abutments in the test group were processed according to a three-stage ultrasonic protocol and assessed qualitatively and quantitatively by determination of residual protein. Ultrasonicated specimens contaminated with sheep blood and E. faecium were additionally eluted and the dilutions were incubated on agar plates for seven days. The determined bacterial counts were expressed as colony-forming units (CFU). RESULTS. Ultrasonic reprocessing resulted in a substantial decrease in residual bacterial protein to less than 80 ㎍ and a reduction in microbiota of more than 7 log levels of CFU for all abutment types, exceeding the effect required for disinfection. CONCLUSION. A three-stage ultrasonic cleaning and disinfection protocol results in effective bacterial decontamination. The procedure is reproducible and complies with the standardized reprocessing and disinfection specifications for one- or two-piece CAD-CAM implant abutments.

Effect of Implant Designs on Insertion Torque and Stress : Three-Dimensional Finite Element Analysis (임플란트 디자인이 식립 회전력과 응력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Kim, Jang-Eung;Choi, Yu-Sung;Lim, Jong-Hwa;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.205-220
    • /
    • 2010
  • Purpose : To analyze the effect of implant designs on insertion torque and stress by performing a comparative study on von Mises stress, torque and normal force through a three-dimensional finite element analysis. Materials and methods : Models of the screw type implant were used to model the implant as a form placed in the mandibular premolar region applying a three-dimensional finite element method. Screw type implant designs were classified into 4 types of parallel ones and 7 types of tapered ones. Other factors were simulated to represent clinical environment. Results : In parallel implant designs, higher and wider threads resulted in higher insertion torques and higher stress distributions. In tapered implant designs, changes in the taper led to remarkable differences in the insertion torques. It was difficult to determine a certain tendency of stress distribution around the implants since the stress level was too high around them. In tapered implant designs, smaller implants demonstrated lower insertion torques than the original type and were relatively less dependent on the degree of taper. Tapered implants showed higher insertion torques and higher stress distributions than parallel implants. Conclusion : According to this study, although the tapered implant demonstrated a higher insertion torque than the parallel implant, stress tended to be concentrated in the entire fixture of the tapered implant due to the inefficient stress distribution.