• 제목/요약/키워드: the Second Moment

검색결과 640건 처리시간 0.023초

타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성 (Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure)

  • 한성호;서정식;신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

Prediction of the wave induced second order vertical bending moment due to the variation of the ship side angle by using the quadratic strip theory

  • Kim, Seunglyong;Ryue, Jungsoo;Park, In-Kyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.259-269
    • /
    • 2018
  • In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid forcing terms including the quadratic terms of the hydrodynamic forces and the Froude-Krylov forces. They are applied to a ship as the external forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.

Moment-curvature relationships to estimate deflections and second-order moments in wind-loaded RC chimneys and towers

  • Menon, Devdas
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.255-269
    • /
    • 1998
  • Second-order moments of considerable magnitude arise in tall and slender RC chimneys and towers subject to along-wind loading, on account of eccentricities in the distributed self-weight of the tower in the deflected profile. An accurate solution to this problem of geometric nonlinearity is rendered difficult by the uncertainties in estimating the flexural rigidity of the tower, due to variable cracking of concrete and the 'tension stiffening' effect. This paper presents a rigorous procedure for estimating deflections and second-order moments in wind-loaded RC tubular towers. The procedure is essentially based on a generalised formulation of moment-curvature relationships for RC tubular towers, derived from the experimental and theoretical studies reported by Schlaich et al. 1979 and Menon 1994 respectively. The paper also demonstrates the application of the proposed procedure, and highlights those conditions wherein second-order moments become too significant to be overlooked in design.

계단 오르기 동작시 계단 높이에 따른 하지 관절 모멘트의 변화 분석 (The effect of the stair heights on lower extremity joint moment in stair-ascent activity)

  • 은선덕
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.121-137
    • /
    • 2003
  • The purpose of this study was to investigate the effect of the stair heights on lower extremity joint moment in stair-ascent activity Data were collected by 3-D cinematography, force platform. six normal males were participated in this experiment. All subjects performed a stair-ascent in four different heights of stairs (10, 14, 18, 22cm) having a 5 step staircase. The moment of lower extremity joint was analyzed during stance phase. The results were as follows: First, the second increase of plantar flexion moment of ankle joint in the 'forward continuance' phase was not occurred for stair A and B. But it occurred for stair C and D. And the maximum plantar flexion moment increased as the stair height become higher. Second, it was shown that the maximum inversion moment of the ankle joint was the smallest at stair B and it increased significantly at stair C. Third, maximum extension moment appeared in the 'pull-up' phase. And it increased as the stair height become higher. Fourth, it was shown that the maximum abduction moment of the knee joint was the smallest at stair C and it increased significantly at stair C. Fifth, maximum extension moment of hip joint increased significantly at stair C. Sixth, remarkable value of adduction moment occurred at hip joints and maximum adduction moment increased at stair D.

이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석 (ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.111-117
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

  • PDF

Rayleigh-Benard 자연대류 유동 해석 (ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

이차모멘트 난류모델을 사용한 성층화된 자연대류 유동 해석 (ANALYSIS OF A STRATIFIED NATURAL CONVECTION FLOW WITH THE SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.55-61
    • /
    • 2007
  • A computational study on a strongly stratified natural convection is performed with the elliptic blending second-moment closure. The turbulent heat flux is treated by both the algebraic flux model (AFM) and the differential flux model (DFM). Calculations are performed for a turbulent natural convection in a square cavity with conducting top and bottom walls and the calculated results are compared with the available experimental data. The results show that both the AFM and DFM models produce very accurate solutions with the elliptic-blending second-moment closure without invoking any numerical stability problems. These results show that the AFM and DFM models for treating the turbulent heat flux are sufficient for this strongly stratified flow. However, a slight difference between two models is observed for some variables.

2차 모멘트 난류모형에 의한 회전하는 평행 평판유동 해석 (Numerical Simulation of Rotating Channel Flows Using a Second Moment Turbulence Closure)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.578-588
    • /
    • 2000
  • A low-Reynolds-number second moment turbulence closure is improved with the aid of DNS data. For the model coefficients of pressure-strain terms, we adopted Shima's model with some modification. Shin and Choi's new dissipation-rate equation is employed to simulate accurately the turbulence energy dissipation rate distribution in the near wall sublayer. The results of computations are compared with DNS, LES data and experimental data for turbulent plane channel flow with rotation about spanwise axis. The present second moment closure achieves a level of agreement similar to that for the non-rotating. In particular, it accurately captures the distribution of turbulence energy dissipation rate in the near wall region.

정사각단면을 갖는 $180^{\circ}$ 곡관내의 2차 모멘트 난류모형에 관한 연구 (Study on the Second Moment Turbulence Model in a Square Sectioned $180^{\circ}$ Bend)

  • 김명호;염성현;최영돈
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1203-1217
    • /
    • 1994
  • In the present study, in order to analyze a turbulent flow in a square sectiond 180.deg. bend, Kim's low Reynolds number second moment turbulence closure is adopted. In this model, turbulence model constants in the wall region are modified as functions of turbulent Reynolds number by use of near wall turbulent universal properties based on Laufer's experimental results of Reynolds stress distriburions. Algebraic stress model and Reynolds stress equation model are used to verify the low Reynolds number second moment closure. The application of the present low Reynolds number algebraic stress model to the prediction of a square sectioned 180.deg. bend flow gives improved velocities and Reynolds stresses profiles compared with those obtained by using the van Driest mixing length model and present low Reynolds number Reynolds stress equation model.