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Abstract

In this study, the second order bending moment induced by sea waves is calculated using the quadratic strip theory. The theory has the fluid
forcing terms including the quadratic terms of the hydrodynamic forces and the FroudeeKrylov forces. They are applied to a ship as the external
forces in order to estimate the second order ship responses by fluid forces. The sensitivity of the second order bending moment is investigated by
implementing the quadratic terms by varying the ship side angle for two example ships. As a result, it was found that the second order bending
moment changes significantly by the variation of the ship side angle. It implies that increased flare angles at the bow and the stern of ships being
enlarged would amplify their vertical bending moments considerably due to the quadratic terms and may make them vulnerable to the fatigue.
Copyright © 2017 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, merchant ships become larger but relatively
lighter than before, in terms of the non-dimensionalized
displacement, to reduce the transportation costs. In case of
container ships recently constructed, for instance, their sizes
are capable of carrying more than 20000 TEU and growing
continuously. By being larger and lighter, their natural fre-
quencies tend to move down to lower frequencies. Therefore,
they are likely to experience resonant vibration, so called
springing, more easily in service. This is because their natural
frequencies become closer to the excitation frequencies of
incoming waves.

The ship's resonant vibration can be induced by the
quadratic components of sea waves as well as the first order
ones (Tasai and Koterayama, 1976). The amplitude of the
response at the resonance produced by the second order

components of the sea waves is generally known to be much
smaller when compared to that by the first order ones. How-
ever in case of ships in severe conditions such as in the Arctic
Ocean, the second order resonant vibration could cause sig-
nificant fatigue problems, because it is proportional to the
square of the wave amplitude (Fujino and Yoon., 1985). This
situation makes fatigue loads being increased, and conse-
quently shortens the life of ships. Therefore, in terms of the
long term response analysis, the accurate estimation of the
second order responses should be included, regarding a sig-
nificant resonant steady-state response. In terms of the fatigue
loads, the vertical bending moment would be the primary
component. So, in this study the vertical bending moment at
midship is of interest.

As ships are enlarged, their bow and stern are flared much
because their breadths increase more than their drafts. This
shape trend would make the second order vertical bending
moment increase due to risen wave loads at the bow and stern.
Thus it would be necessary to understand the characteristics of
the vertical bending moment for the variation of ship side
angle, including the second order components. The ship side
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angle is defined as an angle of a ship side inclined from a
vertical line. This study aims to investigate the contribution of
the second order terms on the ship's vertical bending moments.
The variation of the second order term is introduced by the
change of the ship's side angle. In order to make only the
second order terms vary, the ship side is allowed to be inclined
within slightly above and below the mean water level.

In this study, two ships are chosen; one is an artificial ship
with a uniform cross-section and the other is a Flokstra
container ship as a practical one. The ships are assumed as
Timoshenko beams with free-ends (Bishop and Price, 1979).
Fluid forces are applied to the ships as external forces to
calculate their responses induced by sea waves. The second
order terms of the fluid forces are calculated using the
quadratic strip theory that is proposed by Jensen and Pedersen
(1979). The second order vertical bending waves are predicted
at midship by varying the ship side angle.

2. Theoretical background

In this section, theoretical models used in this study to
predict the ship response is explained, regarding the second
order terms induced by wave loads. External fluid forces are
formulated using a quadratic strip theory, proposed by Jensen
and Pedersen (1979), which includes second order terms for
the fluid forces (Xia et al., 1998). The second order fluid forces
are taken into account by three quadratic parameters. The first
parameter is the second order velocity potential for the inci-
dent wave, which is obtained from the non-linear free
boundary conditions. The second one is associated with a non-
vertical side of ship cross-sections, which occurs when the
breadth of a ship varies along with the depth about waterline.
This variation of the breadth also makes a non-linearity of a
restoring force. The last one is a quadratic hydrodynamic
coefficient; the variation of the added mass and the damping.
Both are dependent on the relative motion between the ship
and the wave surface. As a result, the second order hydrody-
namic and the FroudeeKrylov forces are applied as the
external forces in addition to the first order ones.

The structural response of a ship is formulated using a
Timoshenko beam theory. The response of the ship is pre-
dicted by applying the hydrodynamic and FroudeeKrylov
force.

In this study two Cartesian coordinate systems are adopted
as shown in Fig. 1. The global coordinate OXYZ is fixed with
an origin in still water level while the local coordinate oxyz is
attached on the ship with the origin at the stern of the ship.
These two coordinates coincide when the ship is at rest. The
ship is assumed to have a forward speed U toward the positive
X direction, corresponding to a heading angle of 180�, called
the ‘head sea’.

2.1. Quadratic strip theory for fluid force

The fluid force per unit length applied on a ship is
formulated using a quadratic strip theory that considers the
change of added mass, damping and restoring terms depending
on the relative motion between the ship and the wave surface.
For a ship with a sectional breadth B(z,x) and draft T(x), this
fluid force per unit length is given by

Fðx; tÞ ¼ �
2
4D
Dt

�
mðz;xÞDz

Dt

�
þNðz;xÞDz

Dt

þ
Z�z

�T

Bðz;xÞvp
vZ

����
zþw

dz

3
5; ð1Þ

where D
Dt denotes the total derivative with respect to time as

D
Dt ¼ v

vt � U v
vx, w(x,t) is the vertical displacement of the ship

and z is the relative displacement of z ¼ w� kh, kðxÞ is the
Smith correction factor, h(x, t) is the wave elevation, mðz; xÞ
and Nðz; xÞ denote the added mass per unit length and the
damping at the water surface respectively, and p(x, Z, t) is the
FroudeeKrylov pressure. Eq. (1) has the same form as the
linear strip theory which contains only the linear terms of the
fluid forces (Gerritsma and Beukelman, 1964). In order to take
into account the second order terms of the fluid forces, Taylor
series expansion is applied to the added mass m, the damping
N and the breadth B with respect to the relative motion zðx; tÞ
at a mean water level. Applying Taylor series about z,

mðz;xÞ ¼ mð0;xÞ þ z
vm

vz

����
z¼0

þ 1

2
z2
v2m

vz2

����
z¼0

þ…ymð0;xÞ

þ z
vm

vz

����
z¼0

¼ m0ðxÞ þ zm1ðxÞ;
ð2Þ

Nðz;xÞ ¼ Nð0;xÞ þ z
vN

vz

����
z¼0

þ 1

2
z2
v2N

vz2

����
z¼0

þ…yNð0;xÞ

þ z
vN

vz

����
z¼0

¼ N0ðxÞ þ zN1ðxÞ;
ð3Þ

Bðz;xÞ ¼ Bð0;xÞ þ z
vB

vz

����
z¼0

þ 1

2
z2
v2B

vz2

����
z¼0

þ…yBð0;xÞ

þ z
vB

vz

����
z¼0

¼ B0ðxÞ þ zB1ðxÞ;
ð4Þ

Fig. 1. The coordinate system.
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where Bðz; xÞ is the breadth of the ship with respect to the
relative displacement, and the subscripts 0 and 1 represent the
constant and linear terms with respect to z at waterline,
respectively. In this approximation in Eqs. (2)e(4), only the
constant and linear terms are regarded because they become
the respective linear and quadratic terms about z when they are
substituted into Eq. (1).

The added mass and the damping are evaluated by Porter's
method (Porter, 1961) and Tasai’s method (Tasai, 1960) in this
study. They transform a cross-sectional shape of a ship into a
two parameter Lewis form in order to describe the added mass
and the damping as simple functions of with respect to
breadth, draft and cross-sectional area (Vugts, 1968). Because
they have different frequency ranges applicable, Porter's
method is used for encounter frequencies below 1 (ue < 1) and
Tasai's for encounter frequencies above 1 (ue � 1) in this
study (Heo et al., 2016).

2.2. Restoring forces

The FroudeeKrylov force, so called undisturbed incident
wave force, is expressed by

FRðx; tÞ ¼ �
Z�z

�T

Bðz;xÞvp
vZ

����
zþw

dz: ð5Þ

In Eq. (5), the pressure p is based on the Bernoulli's
equation and given by

pðx;Z; tÞ ¼ r

�
vf

vt
þ gZ þ 1

2
ðVfÞ2

�
; ð6Þ

where f(x, Z, t) is the wave velocity potential, g is the grav-
itational acceleration, r is the water density and V denotes the
gradient. Eq. (6) can be expanded by a perturbation method as

p¼ pð0Þ þ pð1Þ þ pð2Þ þ…; ð7Þ
where

pð0Þ ¼ �rgZ; ð8Þ

pð1Þ ¼ �r
vfð1Þ

vt
; ð9Þ

pð2Þ ¼ �r

�
vfð2Þ

vt
þ 1

2

�
Vfð1Þ�2�: ð10Þ

p(0)(Z ) is the static component of the restoring force and
p(1)(x, Z, t) and p(2)(x, Z, t) are the dynamic force components
that are proportional to the wave amplitude and the square of
the wave amplitude, respectively. In Eqs. (9) and (10), f(1) and
f(2) are the first and second order terms of the wave velocity
potentials, respectively. These terms are obtained by intro-
ducing the non-linear boundary conditions to the first and
second order wave elevation h(1)(x, t) and h(2)(x, t), given by
Eqs. (12) and (13).

h¼ hð1Þ þ hð2Þ þ…; ð11Þ

where

hð1Þðx; tÞ ¼
Xn
i¼1

ai cosðjiÞ; ð12Þ

hð2Þðx; tÞ ¼ 1

4

Xn
i¼1

Xn
j¼1

aiaj
��
ki þ kj

�
cos
�
ji þjj

�
� ��ki � kj

��cos�ji �jj

��
: ð13Þ

In Eqs. (12) and (13), ai is the amplitude of the i th wave,
and n is the number of waves considered. The phase angle ji

of the i th wave is defined by

ji ¼�kiX� sitþ qi; ð14Þ

where ki is the wavenumber, qi is the initial phase angle and si
is the angular wave frequency obtained from the dispersion
relation of the sea wave, given by si ¼

ffiffiffiffiffiffi
gki

p
. In Eq. (14), the

horizontal position X can be expressed by the coordinate x as
x ¼ X � Ut.

The first and the second order velocity potentials of the
incident waves (Longuet-Higgins, 1963) are expressed as

fð1Þðx;Z; tÞ ¼
Xn
i¼1

aisi

ki
ekiZ sinðjiÞ; ð15Þ

fð2Þðx;Z; tÞ ¼ 1

2

Xn
i¼1

Xn
j¼1

aiajmax
��si;sj

�
ejki�kjjZ sin�ji �jj

�
;

ð16Þ

where

max
��si;sj

�¼ ��si if si � sj

sj if si<sj
:

By inserting Eqs. (15) and (16) into Eqs. (9) and (10), the
expanded expressions of the pressures are described by

pð1Þðx;Z; tÞ ¼ rg
Xn
i¼1

aie
kiZ cosðjiÞ; ð17Þ

pð2Þðx;Z; tÞ ¼ �1

2
r
Xn
i¼1

Xn
j¼1

aiaj

n
max

�
si;sj

���si � sj

��ejki�kjjZ

þ sisje
ðkiþkjÞZocos�ji �jj

�
:

ð18Þ
Substituting Eqs. (17) and (18) into Eq. (7), the wave

induced restoring force in Eq. (5) is described with the linear
and quadratic terms as shown in Eqs. (19)e(21).

FRðx; tÞ ¼ F
ð1Þ
R þF

ð2Þ
R ; ð19Þ

where
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F
ð1Þ
R ðx; tÞ ¼ �rgB0

(
w1 �

Xn
r¼1

arkr cosðjrÞ
)
; ð20Þ

F
ð2Þ
R ðx; tÞ ¼ �rgB0w2 þ 1

2
rgB0w

2
1 � rgw1

Xn
i¼1

ai cosðjiÞðB1

�B0ki kiÞ þ 1

4
rg
Xn
i;j¼1

aiaj


cos
�
ji þjj

�
B1

þ cos
�
ji �jj

�� �B1 þ 2B0


� ffiffiffiffiffiffiffi
kikj

p
�max

�
kikj
��
kji�jj �

ffiffiffiffiffiffiffi
kikj

p
kiþj

���
:

ð21Þ
In Eqs. (20) and (21), w1 and w2 are the first and second

order vertical displacements of the ship. The Smith correction
factor ki and kji±jj is expressed by

kiðxÞ ¼ 1� ki
B0ðxÞ

Z0
�T

Bðz;xÞkizdz;

kjiþjjðxÞ ¼ 1�
��ki±kj��
B0ðxÞ

Z0
�T

Bðz;xÞejki±kjjzdz:

ð22Þ

2.3. Hydrodynamic force

The hydrodynamic force per unit length FH(x,t) is composed
of the inertia force and damping force terms expressed by

FHðx; tÞ ¼ �D

Dt

�
m
Dz

Dt



�N

Dz

Dt
: ð23Þ

This hydrodynamic force can be expanded by using the
approximations in Eqs. (2) and (3) and also for the relative
displacement zyz1 þ z2, respectively. Then the hydrodynamic
force with the linear and quadratic terms can be expressed by

FH ¼ F
ð1Þ
H þF

ð2Þ
H ; ð24Þ

where

F
ð1Þ
H ðx; tÞ ¼ �m0

D2z1
Dt2

� n0
Dz1
Dt

; ð25Þ

F
ð2Þ
H ðx; tÞ ¼ �m0

D2z2
Dt2

� n0
Dz2
Dt

� z1

�
m1

D2z1
Dt2

þ n1
Dz1
Dt




�m1

�
Dz1
Dt


2

; ð26Þ

Here, z1 and z2 are the first and second order terms of the
relative displacement and no and n1 are defined by

n0ðxÞ ¼ No �U
vm0

vx
; ð27Þ

n0ðxÞ ¼ No �U
vm0

vx
; ð28Þ

The relative displacements z can be substituted with terms
of the first and second order wave heights h(1), h(2), the Smith
correction factor k and the vertical displacement w of the ship.
Then the hydrodynamic forces are expressed by

F
ð1Þ
H ðx; tÞ ¼ �m0

D2w1

Dt2
� n0

Dw1

Dt
�
Xn
i¼1

aisikifm0si cosðjiÞ

� n0 sinðjiÞg;
ð29Þ

F
ð2Þ
H ðx; tÞ ¼ �m0

D2w2

Dt2
� n0

Dw2

Dt
�w1

�
m1

D2w1

Dt2
þ n1

Dw1

Dt




�m1

�
Dw1

Dt


2

þ
Xn
i¼1

aiki

�
cosðjiÞ

�
m1

D2w1

Dt2

þ n1
Dw1

Dt
� s2

i m1w1

�
þ sinðjiÞ

�
n1siw1

þ 2m1si

Dw1

Dt

� �
þ 1

4

Xn
i¼1

�
Xn
j¼1

aikiajkj

(
cos
�
ji þjj

��
si þ sj

�2�
m1

� �ki þ kj
�
m0

�þ cos
�
ji �jj

��
si � sj

�2�
m1

þ ��ki � kj
��m0

�þ sin
�
ji þjj

��
si þ sj

��� n1

þ �ki þ kj
�
n0
�þ sin

�
ji �jj

��
si � sj

��� n1

� ��ki � kj
��n0�:

ð30Þ

2.4. Equation of motion for a ship using a Timoshenko
beam theory

The equation of motion for a ship can be derived as a
Timoshenko beam with freeefree boundary conditions. The
constituent equations of the Timoshenko beam are given by

Mðx; tÞ ¼ EI
vg

vx
þ hEI

v2g

vxvt
; ð31Þ

Vðx; tÞ ¼ KAG

�
vw

vx
� g



þ hKAG

�
v2w

vxvt
� vg

vt



; ð32Þ

where M(x, t) is the vertical bending moment, V(x, t) is the
shear force, g denotes the angle of rotation, h is the structural
damping, E and G are Young's and shear moduli, I is the area
moment of inertia and A is the sectional area, K is the shear
coefficient of the cross section. Applying the equilibrium
conditions for the moment and shear force,

vMðx; tÞ
vx

¼�Vðx; tÞ þ Imx
v2g

vt2
; ð33Þ

vVðx; tÞ
vx

¼ mðxÞv
2w

vt2
�Fðx; tÞ; ð34Þ
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where Imx is the mass moment of inertia, m(x) is the mass per
unit length and F(x, t) is the external fluid force. By
substituting Eqs. (31) and (32) into Eqs. (33) and (34), the
equations of motion are given by

v

vx

�
EI

�
1þ h

v

vt



vg

vx

�
þKGA

�
1þ h

v

vt


�
vw

vx
� g




¼ ImxðxÞv
2g

vt2
; ð35Þ

v

vx

�
KGA

�
1þ h

v

vt


�
vw

vx
� g


�
¼ mðxÞv

2w

vt2
�Fðx; tÞ: ð36Þ

Here, the eigenvalue problem of the beam is solved by
applying the freeefree boundary conditions at both ends of the
beam in order to obtain the natural frequencies and the mode
shapes for the vertical directional motion. The vertical
displacement and the rotational angle are expressed by the
modal superposition as

gðx; tÞ ¼
XN
i¼0

uiðtÞaiðxÞ ð37Þ

wðx; tÞ ¼
XN
i¼0

uiðtÞviðxÞ ð38Þ

where ai and vi denote the ieth mode shapes (Cuthill and
Henderson, 1925) for the rotational angle and vertical
displacement, respectively, and ui is the time dependent
modal amplitude. The subscript, i ¼ 0, 1 and 2 represent the
heave, pitch and two node vibration modes, respectively. By
inserting Eqs. (37) and (38) into Eqs. (35) and (36), and
applying the orthogonality relations between each mode, the
governing equation in the modal domain is written by

€uj þ hU2
j _uj þU2

j uj ¼
ZL
0

vjF

 
x; t;
XN
i¼0

uivi

!
dx: ð39Þ

Here, Uj is the jeth natural frequency of the beam. Since the
quadratic terms were included in the derivation of Eq. (39), uj
is also expressed as a sum of the linear and quadratic terms as

uj ¼ u
ð1Þ
j þ u

ð2Þ
j : ð40Þ

Using the terms of the mode shapes and Eq. (40), the first
and second order vertical displacements and rotational angles
are obtained from Eqs. (37) and (38). Then finally the first
and second order vertical bending moments and shear forces
in Eqs. (31) and (32) can be calculated, respectively (Betts
et al., 1974).

3. Numerical simulations for artificial ships

In the previous section, the equations for the ship response
caused by regular waves were formulated by including the

quadratic components. In order to examine the contribution of
the quadratic terms to the ship response in this section, the
calculation of the second order vertical bending moment is
carried out by changing the ship side angle artificially. This
simulation is carried out choosing two ship models, which are
an ideal ship with a uniform cross-section and Flokstra
container ship (Flokstra, 1974) as a practical one.

3.1. Example 1. A ship with a uniform cross-section

To observe the variation of the second order vertical
bending moment induced by incoming waves, a uniform ship
that has a constant cross-section along its length as shown in
Fig. 2 is investigated in this example. The principal di-
mensions of the uniform ship are listed in Table 1.

In Fig. 2, Dz denotes the variable range of the draft of the
ship, and q is the ship angle of the side varying. Bu and Bl

denote the breadths at Dz above and below the waterline,
respectively. In this simulation, it is desired that the linear
terms in the quadratic strip theory are little influenced by the
variation of q in order to see only the perturbation of the
quadratic terms. To achieve this purpose, the ship side angle q
is assumed to be changed only within slightly above and below
the waterline. So several different values of Dz were examined
and finally Dz was chosen to be 0.1 m in this example. The
rate of change of the breadth against the relative displacement
z can be defined by the ship side angle as

B1 ¼ vB

vz

����
z¼0

¼ Bu �Bl

2Dz
¼ 2 tan q: ð41Þ

The prediction is conducted inclining q from 0 to 70� with a
10� interval. The limit of 70� is chosen based on the stern side
angles of practical container ships.

Above all, the first order bending moments M1 at the
midship section of the uniform ship are illustrated in Fig. 3 for
various side angles. Fig. 3 shows that the first order bending
moment has two dominant peaks: the first one at around
0.8 rad/s is correspond to the hogging and sagging motions of
the ship, which occurs when the wave length matches with the
ship length. The highest peak at around 3.12 rad/s, called ‘the

Fig. 2. Body plan of a ship with a uniform cross-section.
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second peak’ hereafter in this paper, takes place due to the two
node resonant vibration of the ship. It can be seen from Fig. 3
that the first order bending moment does not affected by the
side angle variation as intended. It means that the variation of
the ship side angle has little effect on the added mass and
damping because the ship side angle was restricted to vary
only around the waterline in this analysis.

There are two values of the second order vertical bending
moments, which are called M20 and M22 in general. M20 is a
response caused by a second order wave component having a
frequency difference of si�sj. It implies ‘mean drift’ of the
second order vertical bending moment. M22 is induced by a
second order wave component, so called ‘sum frequency’
which has the sum of two frequencies si þ sj. Non-
dimensional M20 is illustrated in Fig. 4 and it grows as the
ship side angle increases at the hogging and sagging fre-
quency. It implies that the ship side angle increases the mean
drift of the second order bending moment increase due to the
difference between the hogging and sagging motion. The
variation of non-dimensional M22 for the uniform ship induced

Table 1

Principal dimensions of the uniform ship.

LBP (m) 270

Breadth (m) 31.9

Draft (m) 10.26

Structural damping factor 0.001

0 1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Encounter frequency(rad/s)

M
1/(

a ρ
gB

L2 )

0o

10o

20o

30o

40o

50o

60o

70o

Fig. 3. Non-dimensional first order vertical bending moments of the uniform ship.

Fig. 4. Non-dimensional M20 of the uniform ship.
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by the sum frequency wave is shown in Fig. 5. Unlike the first
order one in Fig. 3, it can be seen from Fig. 5, the ship side
angle contributes strongly to M22. M22 drops first and then
grows as the side angle increases at the two peak frequencies.
Here the first peak at 0.8 rad/s represents the moment at the
hogging and sagging frequency, and the second peak at
1.56 rad/s corresponds to the two node resonant frequency. It
can be seen that the frequency of the two node resonance in
Fig. 5 is a half of the first order one shown in Fig. 3 because
the wave frequency is doubled when the two frequencies si
and sj are the same.

In this study, it is more interested in examining M22, rather
than M20, so that the variation of M22 is investigated further at
the two peak frequencies. In order to look close the variation
of M22 at the two peaks in Fig. 5, M22 at 0.8 and 1.56 rad/s are
plotted again in Fig. 6 against the ship side angle. It can be
seen from Fig. 6 that the amplitudes of M22 at the two peak
frequencies decrease as the ship side begins to incline, but turn
to grow as the angle goes further, particularly at the second
peak.

This feature can be explained by regarding at the variation
of the fluid forcing terms against the side angle. The inertia,

Fig. 5. Non-dimensional M22 of the uniform ship.

Fig. 6. The peak values versus the uniform ship side angle.
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damping and restoring fluid forces in Eqs. (21) and (30) can be
rewritten by

Bðz;xÞ �u2mzðz;xÞ ¼ Bð0;xÞ þ z
vB

vz

����
z¼0

�u2

�
mzð0;xÞ

þ z
vmz

vz

����
z¼0

�
¼ Bð0;xÞ �u2mzð0; xÞ

þ z
�
B1 �u2mz1

�
;

ð42Þ
where mz ¼ m� Ni=u, mz1 ¼ vm=vz� ði=uÞvN=vz and i de-
notes the imaginary number.

In Eq. (42), the inertia force and the restoring force are
applied in opposite directions. At q ¼ 0�, B1 in Eq. (42) be-
comes zero because the breadth remains constant along the
depth direction at this angle. Therefore, the second order net
force zðB1 � u2mz1Þ becomes equal to the inertia force. As the
ship side angle inclines, both B1 and mz1 increase but B1 will
grow faster than mz1 because the variation of the breadth is
limited just around the waterline. Fig. 7 shows the magnitude
of the second order net forces at two peak frequencies
calculated by Eqs. (21) and (30). The amplitude of force at
1.56 rad/s is decreasing until q reaches to an angle that the
inertia force and the restoring force are canceled out, which is
around 30� where the vertical bending moment has minimum
value. After the restoring force exceeds the inertia force, the
second order net force increases exponentially with q. At
0.8 rad/s, on the other hand, the force is just increasing in
Fig. 7, because the term u2mz1 is negligible at this frequency.
It is sure from the comparison between the results in Figs. 6
and 7 that variation of the forces at the two peak fre-
quencies in Fig. 7 resembles that of M22 in Fig. 6. It also can
be seen from Fig. 6 that the peak values increase more rapidly

with the large angles. This implies that the second order
bending moment becomes more sensitive to the largely in-
clined ship sides. From this result, therefore, it is anticipated
that the inclined sides at the bow and stern in practical ships
would cause significant effect on the second order vertical
bending moment of the ships.

3.2. Example 2. Flokstra container ship

In order to evaluate the variation of the second order
response of a practical ship due to the inclined ship sides, a
Flokstra container ship is chosen in this section. Fig. 8 illus-
trates the body plan of the Flokstra container ship and the
principal dimensions are listed in Table 2. The ship side angles
at each station are set to be varied with fixed rates of ±2, ±4
and ±6% with respect to the given initial angles around the
waterline shown in Fig. 8. Since the angle varies with rates to
the initial inclination, the side angles at the stern and bow

Fig. 7. The external force versus with respect to the ship side angle.

Fig. 8. The body plan of Flokstra container ship (Flokstra, 1974).
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varies more widely compare to the stations close to the mid-
ship. The largest change of the side angle occurs at the stern
section for about 1.5� with the rate of 2% variation of the side
angle. In case of the midship, the side angle is not changed by
these rates because its initial angle is 0�. These variations of

the side angle are assumed to take place only within a draft
range between 0.1 m below and above the waterline as
regarded in Example 1 for the uniform ship.

The first order vertical bending moments M11 at the mid-
ship section are shown in Fig. 9 for various side angles. They
are little changed by the side angle variations as observed in
the uniform section ship. However, in case ofM22 illustrated in
Fig. 10, the change of the ship side angle makes a large
perturbation, particularly around the second peak at 2.2 rad/s,
which corresponds to the two node resonant frequency of the
ship. Therefore, it can be said from Fig. 10 that the inclination
of the ship side, especially at the stern and bow sections,

Table 2

Principal dimensions of the Flokstra container ship.

LBP (m) 270

Breadth (m) 32.2

Draft (m) 10.26

Structural damping factor 0.001

Fig. 9. Non-dimensional first order bending moments of the Flokstra ship.

Fig. 10. Non-dimensional second order vertical bending moments of the Flokstra ship.
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makes a considerable variation of the second order bending
moment of the ship.

The variation of M22 of the Flokstra ship at the first peak at
0.72 rad/s and second peaks are plotted in Fig. 11 with respect
to the inclined rate. Dislike those from the uniform ship, they
increases monotonically as the angle increases. It is because
that the side angles at the stern and bow of the Flokstra ship
are large enough so that the restoring force is always bigger
than the inertia force from the beginning. For example, the
initial side angle of the stern section is about 73�, so that the
second order vertical bending moment has a large increment
following the tendency of the result in Fig. 6.

4. Conclusions

In this paper, the responses of ships induced by wave loads
were investigated by using the quadratic strip theory. To do
that, the linear and quadratic terms of fluid forces were
involved in modeling wave loads while ships were supposed as
a Timoshenko beam with freeefree boundaries. The fluid
forces were applied to the ships as external forces which are
induced by incoming sea waves.

In this study, it was attempted to examine the contribution
of the quadratic terms to the vertical bending moment of ships.
For this purpose, the quadratic terms were introduced to the
fluid forces by changing the breadth of ships artificially. Two
ship models were chosen; one is a uniform ship with a con-
stant cross-section along its length and the other is a Flokstra
container ship. For these two ships the side angles were set to
be varied just around the waterline to keep the linear terms
maintained and then the perturbation of the second order
vertical bending moment were predicted.

It is confirmed from this study that the vertical bending
moment varies significantly due to the quadratic terms. In case

of the uniform ship model, the second order bending moment
tends to decrease and then increase with the ship side angle
variation due to the relation between the inertia and restoring
forces in opposite directions. The quadratic term of the inertia
force, which is dependent on the cross sectional area, has
maintained nearly the same despite of the ship side angles,
while that of the restoring force has increased rapidly as the
ship side angle increases. That is, the variation of the ship side
angle could increase the quadratic buoyancy force term, so the
total force become increasing after the buoyancy force is over
the inertia force.

In addition, it was found that the second order bending
moment becomes more sensitive for larger side angles. In case
of a Flokstra ship which has large side angles at the stern and
bow, it can be expected that the stern and bow sides govern the
second order bending moments. In this case the second order
vertical bending moment just increased as the ship side angle
increases. This feature comes from a condition that the bow
and stern sections have large initial inclinations from the
beginning. That is, they were large enough to make the second
order initial buoyance force become greater than that of inertia
force. Therefore the second order terms of the external force is
increasing as the ship side angle increases.

This study has limited to regular incident waves at head
sea. In the future, this study needs to be conducted for the
irregular wave cases. Also short term and long term statistics
will be required to be carried out in order to investigate the
characteristics of the fatigue stress for the ship side angle
change.
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