• 제목/요약/키워드: the Bonnesen style inequality

검색결과 3건 처리시간 0.019초

ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN ℝn

  • Zeng, Chunna
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.799-816
    • /
    • 2017
  • In this paper, we investigate the Bonnesen-style Aleksandrov-Fenchel inequalities in ${\mathbb{R}}^n$, which are the generalization of known Bonnesen-style inequalities. We first define the i-th symmetric mixed homothetic deficit ${\Delta}_i(K,L)$ and its special case, the i-th Aleksandrov-Fenchel isoperimetric deficit ${\Delta}_i(K)$. Secondly, we obtain some lower bounds of (n - 1)-th Aleksandrov Fenchel isoperimetric deficit ${\Delta}_{n-1}(K)$. Theorem 4 strengthens Groemer's result. As direct consequences, the stronger isoperimetric inequalities are established when n = 2 and n = 3. Finally, the reverse Bonnesen-style Aleksandrov-Fenchel inequalities are obtained. As a consequence, the new reverse Bonnesen-style inequality is obtained.

SOME NEW BONNESEN-STYLE INEQUALITIES

  • Zhou, Jiazu;Xia, Yunwei;Zeng, Chunna
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.421-430
    • /
    • 2011
  • By evaluating the containment measure of one domain to contain another, we will derive some new Bonnesen-type inequalities (Theorem 2) via the method of integral geometry. We obtain Ren's sufficient condition for one domain to contain another domain (Theorem 4). We also obtain some new geometric inequalities. Finally we give a simplified proof of the Bottema's result.

ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT

  • Zhou, Jiazu;Ma, Lei;Xu, Wenxue
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.175-184
    • /
    • 2013
  • In this paper, the reverse Bonnesen style inequalities for convex domain in the Euclidean plane $\mathbb{R}^2$ are investigated. The Minkowski mixed convex set of two convex sets K and L is studied and some new geometric inequalities are obtained. From these inequalities obtained, some isoperimetric deficit upper limits, that is, the reverse Bonnesen style inequalities for convex domain K are obtained. These isoperimetric deficit upper limits obtained are more fundamental than the known results of Bottema ([5]) and Pleijel ([22]).