1 |
J. Zhou, When can one domain enclose another in ?, J. Austral. Math. Soc. Ser. A 59 (1995), no. 2, 266-272.
DOI
|
2 |
J. Zhou, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2797-2803.
DOI
ScienceOn
|
3 |
J. Zhou, On Willmore's inequality for submanifolds, Canad. Math. Bull. 50 (2007), no. 3, 474-480.
DOI
|
4 |
J. Zhou, On the Willmore deficit of convex surfaces, Tomography, impedance imaging, and integral geometry (South Hadley, MA, 1993), 279-287, Lectures in Appl. Math., 30, Amer. Math. Soc., Providence, RI, 1994.
|
5 |
J. Zhou, The Willmore functional and the containment problem in , Sci. China Ser. A 50 (2007), no. 3, 325-333.
DOI
ScienceOn
|
6 |
J. Zhou, Bonnesen-type inequalities on the plane, Acta Math. Sinica (Chin. Ser.) 50 (2007), no. 6, 1397-1402.
|
7 |
J. Zhou and F. Chen, The Bonnesen-type inequalities in a plane of constant curvature, J. Korean Math. Soc. 44 (2007), no. 6, 1363-1372.
과학기술학회마을
DOI
ScienceOn
|
8 |
E. Teufel, Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math. 22 (1992), no. 1-2, 622-630.
DOI
|
9 |
S. Wei and M. Zhu, Sharp isoperimetric inequalities and sphere theorems, Pacific J. Math. 220 (2005), no. 1, 183-195.
DOI
|
10 |
J. L. Weiner, A generalization of the isoperimetric inequality on the 2-sphere, Indiana Univ. Math. J. 24 (1974/75), 243-248.
DOI
|
11 |
J. L. Weiner, Isoperimetric inequalities for immersed closed spherical curves, Proc. Amer. Math. Soc. 120 (1994), no. 2, 501-506.
DOI
ScienceOn
|
12 |
S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975), no. 4, 487-507.
DOI
|
13 |
G. Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183-202.
DOI
|
14 |
J. Zhou, A kinematic formula and analogues of Hadwiger's theorem in space, Geometric analysis (Philadelphia, PA, 1991), 159-167, Contemp. Math., 140, Amer. Math. Soc., Providence, RI, 1992.
|
15 |
G. Zhang and J. Zhou, Containment measures in integral geometry, Integral geometry and convexity, 153-168, World Sci. Publ., Hackensack, NJ, 2006.
|
16 |
X.-M. Zhang, Bonnesen-style inequalities and pseudo-perimeters for polygons, J. Geom. 60 (1997), no. 1-2, 188-201.
DOI
|
17 |
X.-M. Zhang, Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 126 (1998), no. 2, 461-470.
DOI
ScienceOn
|
18 |
J. Zhou, The sufficient condition for a convex body to enclose another in TEX>$R^{4}$, Proc. Amer. Math. Soc. 121 (1994), no. 3, 907-913.
|
19 |
J. Zhou, Kinematic formulas for mean curvature powers of hypersurfaces and Had- wiger's theorem in , Trans. Amer. Math. Soc. 345 (1994), no. 1, 243-262.
DOI
ScienceOn
|
20 |
W. Y. Hsiung, An elementary proof of the isoperimetric problem, Chinese Ann. Math. Ser. A 23 (2002), no. 1, 7-12.
|
21 |
H. Ku, M. Ku, and X. Zhang, Isoperimetric inequalities on surfaces of constant curvature, Canad. J. Math. 49 (1997), no. 6, 1162-1187.
DOI
ScienceOn
|
22 |
M. Li and J. Zhou, An upper limit for the isoperimetric decit of convex set in a plane of constant curvature, Sci. in China Mathematics 53 (2010), no. 8, 1941-1946.
DOI
|
23 |
E. Lutwak, D. Yang, and G. Zhang, Sharp affine Lp Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17-38.
DOI
|
24 |
R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182-1238.
DOI
|
25 |
D. Ren, Topics in Integral Geometry, World Scientific, Sigapore, 1994.
|
26 |
R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1-29.
DOI
ScienceOn
|
27 |
A. Pleijel, On konvexa kurvor, Nordisk Math. Tidskr. 3 (1955), 57-64.
|
28 |
G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.
|
29 |
L. A. Santalo, Integral Geometry and Geometric Probability, Reading, MA: Addison- Wesley, 1976.
|
30 |
A. Stone, On the isoperimetric inequality on a minimal surface, Calc. Var. Partial Differential Equations 17 (2003), no. 4, 369-391.
DOI
|
31 |
D. Tang, Discrete Wirtinger and isoperimetric type inequalities, Bull. Austral. Math. Soc. 43 (1991), no. 3, 467-474.
DOI
|
32 |
E. Teufel, A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math. (Basel) 57 (1991), no. 5, 508-513.
DOI
ScienceOn
|
33 |
T. Bonnesen and W. Fenchel, Theorie der konvexen Korper, Springer-Verlag, Berlin- New York, 1974.
|
34 |
O. Bottema, Eine obere Grenze fur das isoperimetrische Dezit ebener Kurven, Nederl. Akad. Wetensch. Proc. A66 (1933), 442-446.
|
35 |
Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, Heidelberg, 1988.
|
36 |
C. Croke, A sharp four-dimensional isoperimetric inequality, Comment. Math. Helv. 59 (1984), no. 2, 187-192.
DOI
|
37 |
V. Diskant, A generalization of Bonnesen's inequalities, Dokl. Akad. Nauk SSSR 213 (1973), 519-521.
|
38 |
K. Enomoto, A generalization of the isoperimetric inequality on and flat tori in , Proc. Amer. Math. Soc. 120 (1994), no. 2, 553-558.
|
39 |
E. Grinberg, D. Ren, and J. Zhou, The symetric isoperimetric deficit and the contain- ment problem in a plan of constant curvature, preprint.
|
40 |
E. Grinberg, Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies, Math. Ann. 291 (1991), no. 1, 75-86.
DOI
|
41 |
E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), no. 1, 77-115.
DOI
|
42 |
L. Gysin, The isoperimetric inequality for nonsimple closed curves, Proc. Amer. Math. Soc. 118 (1993), no. 1, 197-203.
DOI
ScienceOn
|
43 |
G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambradge Univ. Press, Cambradge/New York, 1951.
|
44 |
R. Howard, The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2779-2787.
DOI
ScienceOn
|
45 |
C. C. Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary, Ann. of Math. (2) 73 (1961), 213-220.
DOI
|
46 |
T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971/72), 175-192.
DOI
|
47 |
J. Bokowski and E. Heil, Integral representations of quermassintegrals and Bonnesen- style inequalities, Arch. Math. (Basel) 47 (1986), no. 1, 79-89.
DOI
ScienceOn
|
48 |
T. Bonnesen, Les problems des isoperimetres et des isepiphanes, Paris, 1929.
|