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ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT

Jiazu Zhou, Lei Ma, and Wenxue Xu

Abstract. In this paper, the reverse Bonnesen style inequalities for con-
vex domain in the Euclidean plane R

2 are investigated. The Minkowski
mixed convex set of two convex sets K and L is studied and some new geo-
metric inequalities are obtained. From these inequalities obtained, some
isoperimetric deficit upper limits, that is, the reverse Bonnesen style in-
equalities for convex domain K are obtained. These isoperimetric deficit
upper limits obtained are more fundamental than the known results of
Bottema ([5]) and Pleijel ([22]).

1. Introductions and preliminaries

Perhaps the best known geometric inequality is the classical isoperimetric
inequality. And its analytic proofs root back to centuries ago. One can find
some simplified and beautiful proofs that lead to generalizations of higher di-
mensions and applications to other branches of mathematics (cf. [1], [6], [10],
[11]-[17], [16], [20], [21], [24]-[25], [27], [29], [30], [31], [32], [34]-[35], [37], [39]).

The classical isoperimetric inequality says that: the circle is the only curve
of constant perimeter enclosing the maximum area. This property is most
precisely expressed in the following inequality:

(1) P 2
− 4πA ≥ 0,

where P and A are, respectively, the perimeter of curve Γ and the area Γ
encloses. The equality sign holds if and only if Γ is a circle.

Let K be a domain with the boundary composing of the simple curve ∂K

of perimeter PK and area AK in the Euclidean plane R
2. The isoperimetric

deficit of K is defined as

(2) ∆2(K) = P 2
K − 4πAK .

The isoperimetric deficit ∆2(K) measures the deficit between a domain K and
a disc of radius PK

2π . During the 1920’s, Bonnesen proved a series of inequalities
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of the form

(3) ∆2(K) ≥ BK ,

where the quantity BK is an invariant of geometric significance having the
following basic properties:

1. BK is non-negative;
2. BK is vanish only when K is a disc.
Many Bs are found in the last century and mathematicians are still working

on those unknown invariants of geometric significance. An inequality of type
(3) is called a Bonnesen style inequality. See [2], [3], [4], [6], [10], [16], [19], [21],
[24], [25], [34] and [33] for more detailed references.

A set of points K in the Euclidean space R
n is convex if for all x, y ∈ K

and 0 ≤ λ ≤ 1, λx + (1 − λ)y ∈ K. The convex hull K∗ of a set of points
K in R

n is the intersection of all convex sets that contain K. A domain is a
compact set with nonempty interiors. Since for any domain K in R

2, its convex
hull K∗ increases the area A∗ and decreases the perimeter P ∗. Then we have
P 2−4πA ≥ P ∗2−4πA∗, that is, ∆2(K) ≥ ∆2(K

∗). Therefore the isoperimetric
inequality and the Bonnesen style inequality are valid for all domains in R

2 if
these inequalities are valid for convex domains.

The following known inequality is so-called the Bonnesen isoperimetric in-
equality:

Proposition 1. Let K be a convex domain of area AK and perimeter PK . Let

rI(K) and rE(K) be the radius of the maximum inscribed disc and the radius

of the minimum circumscribed disc, respectively, of K. Then

∆2(K) = P 2
K − 4πAK ≥ π2(rE(K)− rI(K))2,

where the equality holds if and only if K is a disc.

When mathematicians are mainly interested in and focus on the lower bounds
of the isoperimetric deficit, that is, the Bonnesen-type inequalities, there is an-
other question: Is there invariant UK of geometric significance such that

(4) ∆2(K) ≤ UK?

That is, to find the reverse Bonnesen style inequality. We also expect that the
upper bound be attained when K is a disc. We are not aware of any general
upper bound up today except for few results for special convex domains, that
is, for oval domains ([5], [22], [25]).

Let K be an oval domain in R
2 with the continues radius of curvature ρ of

the boundary ∂K. Bottema (see [5], [25]) finds the following reverse Bonnesen
isoperimetric inequality:

Proposition 2. Let K be a convex domain of area AK and perimeter PK with

the continuous radius of curvature ρ of ∂K. Let ρm and ρM be the smallest

and the greatest values, respectively, of ρ. Then

(5) ∆2(K) = P 2
K − 4πAK ≤ π2(ρM − ρm)2.



ON THE ISOPERIMETRIC DEFICIT UPPER LIMIT 177

The equality sign holds if and only if ρM = ρm, that is, K is a disk.

Recently, the Bottema’s inequality (5) has been generalized to the plane of
constant curvature in [19].

Pleijel (see [22], [25]) has an improvement of Bottema’s result as follows:

Proposition 3. Let K be a convex domain of area AK and perimeter PK with

the continuous curvature radius ρ of ∂K. Let ρm and ρM be the smallest and

the greatest values, respectively, of ρ. Then

(6) ∆2(K) = P 2
K − 4πAK ≤ π(4− π)(ρM − ρm)2.

The equality sign holds if and only if K is a disc.

In this paper, we first investigate the Minkowski mixed area of two convex
sets K,L in the Euclidean plane R

2 and obtain some geometric inequalities
involving the mixed area AK,L of K and L. By these inequalities obtained
we derive some reverse Bonnesen style inequalities for a convex domain K.
These reverse Bonnesen style inequalities, that is, the isoperimetric deficit up-
per bounds obtained, are invariants involving area AK , circum length PK ,
radius rI of the inscribed disc and the radius rE of the circumscribed disk
of K. As we expected, those reverse Bonnesen style inequalities are held as
equalities if and only if K is a disc. These upper limits obtained are analogues
of Bottema’s (5) and Pleijel’s (6). One of the main results is Theorem 3 that
improves the isoperimetric deficit upper limit of Bokowski and Heil in [2].

2. The mixed convex set of convex sets in R
2

A line G in the Euclidean plane R2 can be determined by its distance p from
the origin O and the angle φ of the normal with the x-axis. The line equation
can be expressed as

(7) G(p, φ) : x cosφ+ y sinφ− p = 0, 0 ≤ p < +∞, 0 ≤ φ ≤ 2π.

If function p = p(φ) is of class C2 and of periodic, then the envelope of the
family of lines is:

(8) x = p cosφ− p′ sinφ. y = p sinφ+ p′ cosφ.

If the envelope is the boundary ∂K of a convex set K and O is an interior
point of K, then p = p(φ) is called the support function of K (or the support
function of the convex curve ∂K with reference to the origin O). The lines (7)
are called the support lines of K. Therefore we can prove that p+ p′′ > 0, and
the arc-parameter is

(9) ds = (p+ p′′)dφ.

It is well-known that a necessary and sufficient condition that a function of
period 2π should be the support function of a convex set K is that

(10) p(φ) + p′′(φ) > 0, 0 ≤ φ < 2π.
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From the Cauchy’s formula for convex sets, we have the perimeter of K is

(11) PK =

∫ 2π

0

p(φ) dφ,

and the area of a convex set K can also be evaluated by its support function,
that is,

(12) AK =
1

2

∫

∂K

p ds =
1

2

∫ 2π

0

p(p+ p′′) dφ

or

(13) AK =
1

2

∫ 2π

0

(p2 − p′
2
) dφ.

Let K,L be compact convex sets with, respectively, support functions pK ,
pL assumed of class C2. Then pK +pL determines a convex set M(K,L) called
the mixed convex set of K and L.

The perimeter of M(K,L) is

(14) PM(K,L) = PK + PL,

and the area of M(K,L) is given by

AM(K,L) = AK +AL + 2AK,L.

The Minkowski mixed area of K and L is defined as

(15) AK,L =
1

2

∫ 2π

0

(pKpL − p′Kp′L) dφ.

Integration by parts gives,

(16) AK,L =
1

2

∫ 2π

0

pK(pL + p′′L)dφ =
1

2

∫ 2π

0

pL(pK + p′′K)dφ = AL,K .

Therefore we have the following results:

Lemma 1. For convex sets K and L, AK,L is rigid invariant.

Lemma 2. For any convex set K,

(17) AK,K = AK .

Lemma 3. The mixed area AK,L is monotonic, that is, for convex sets K, L1,

L2 such that L1 ⊂ L2, then

(18) AK,L1
≤ AK,L2

.

Lemma 4. Let K be a convex set. Then for the disc Br of radius r, we have

(19) AK,Br
=

r

2
PK .

Lemma 5 (Minkowski). Let K and L be convex sets. Then

(20) A2
K,L −AKAL ≥ 0,

where equality holds if and only if K and L are homothetic.
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Let K be a convex set and Br be disc of radius r. Then by Lemma 4 we
have

(21) A2
K,Br

−AKABr
=

( r

2
PK

)2

− πr2AK =
r2

4
(P 2

K − 4πAK).

Then by Lemma 5 we immediately obtain the known classical isoperimetric
inequality (1).

3. The isoperimetric deficit upper limit for convex domains in R
2

Let K be a convex domain of length PK and area AK in R
2. Assume that

K encloses a maximum inscribed circle of radius rI and is circumscribed in a
smallest circle of radius rE . Then we have the following inequalities that will
lead to our isoperimetric upper limits.

Theorem 1. Let K be a convex domain in the Euclidean plane R
2 and dK

be the diameter of K. Then the invariants PK , AK , rI , rE of K satisfy the

following inequalities:

(22) rI ≤
2AK

PK

≤

√

AK

π
≤

PK

2π
≤

dK

2
≤ rE .

Each equality sign holds if and only if K is a disc.

Proof. Since the inequalities 2AK

PK

≤

√

AK

π
≤

PK

2π are just the variant forms of

the isoperimetric inequality. The inequality PK

2π ≤
dK

2 ≤ rE is known ([25],

[24]). Therefore we just need to prove the first inequality rI ≤
2AK

PK

.
The inequality

(23) rI ≤
2AK

PK

comes immediately from Lemma 2, Lemma 3 and Lemma 4. We complete the
proof of Theorem 1. �

Remark 1. The inequality (23) holds for all convex domains, with C2-smooth
or non C2-smooth boundary ([36], [37]). Therefore all inequalities in (22) are
valid for all convex domains, even for convex domains with non C2-smooth
boundaries.

Via inequalities

rI ≤
2AK

PK

≤
PK

2π
≤ rE

in (22), we have
PK

2π
−

2AK

PK

≤ rE − rI ,

that is,
P 2
K − 4πAK ≤ 2πPK(rE − rI).

We have proved the following:
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Theorem 2. Let K be a convex domain of perimeter PK , and area AK in

the Euclidean plane R
2. Let rI and rE be, respectively, the in-radius and

the circum-radius of K. Then we have the following reverse Bonnesen style

inequality:

(24) ∆2(K) = P 2
K − 4πAK ≤ 2πPK(rE − rI),

where the equality holds if and only if K is a disc.

The inequality (24) is also obtained by Bokowski and Heil for convex domain
K with C2-smooth boundary ∂K (see [2]) by a different approach. And they
state that the inequality is better than Favard’s inequality (cf. page 83 in [4])
for the minimal circular annulus (minimalkreisring).

Via inequalities

rI ≤
2AK

PK

≤
PK

2π
≤

dK

2

from (22), we have
PK

2π
−

2AK

PK

≤
dK

2
− rI(K),

that is,

P 2
K − 4πAK ≤ 2πPK

(

dK

2
− rI

)

.

We obtain the following isoperimetric deficit upper limit that is an improvement
of Bokowski and Heil’s inequality (24).

Theorem 3. Let K be a convex domain of perimeter PK and area AK in

the Euclidean plane R
2. Let rI and dK be, respectively, the in-radius and the

diameter of K. Then we have the following reverse Bonnesen style inequality:

(25) ∆2(K) = P 2
K − 4πAK ≤ 2πPK

(

dK

2
− rI

)

,

where the equality holds if and only if K is a disc.

From inequalities

rI ≤
2AK

PK

≤

√

AK

π
≤ rE

in (22), we have

r2I ≤
4A2

K

P 2
K

≤
AK

π
≤ r2E ,

and then
AK

π
−

4A2
K

P 2
K

≤ r2E − r2I .

Therefore we have

(26) P 2
K − 4πAK ≤

πP 2
K

AK

(r2E − r2I ).
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By inequalities

rI ≤

√

AK

π
≤

PK

2π
≤ rE

in (22), we have

r2I ≤
AK

π
≤

P 2
K

4π2
≤ r2E ,

and then
P 2
K

4π2
−

AK

π
≤ r2E − r2I ,

that is,

(27) P 2
K − 4πAK ≤ 4π2(r2E − r2I ).

We have proved the following theorem.

Theorem 4. Let K be a convex domain of perimeter PK and area AK in

the Euclidean plane R
2. Let rI and rE be, respectively, the in-radius and

the circum-radius of K. Then we have the following reverse Bonnesen style

inequalities:

(28)
∆2(K) = P 2

K − 4πAK ≤
πP 2

K

AK
(r2E − r2I );

∆2(K) = P 2
K − 4πAK ≤ 4π2(r2E − r2I ).

Each equality sign holds if and only if K is a disc.

Also by inequalities

rI ≤
2AK

PK

≤
PK

2π
≤

dK

2
,

we have:

Theorem 5. Let K be a convex domain of the perimeter PK and area AK in

the Euclidean plane R
2. Let rI and dK be, respectively, the in-radius and the

diameter of K. Then we have the following reverse Bonnesen style inequalities:

(29)
∆2(K) = P 2

K − 4πAK ≤
πP 2

K

AK

(

d2

K

4 − r2I

)

;

∆2(K) = P 2
K − 4πAK ≤ 4π2

(

d2

K

4 − r2I

)

.

Each equality holds as an equality if and only if K is a disc.

Remark 2. By the isoperimetric inequality (1) and inequalities (22) we have

2πPK

(

dK

2
− rI

)

≤ 2πPK(rE − rI) ≤ 4π2rE(rE − rI)

≤ 4π2(r2E − r2I ) ≤
πP 2

K

AK

(r2E − r2I ).

Therefore the inequality (25), that is,

(30) ∆2(K) = P 2
K − 4πAK ≤ 2πPK

(

dK

2
− rI

)
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is the best isoperimetric deficit upper limit.

Remark 3. Our isoperimetric deficit upper limits do not assume K is an oval
domain, that is, we do not assume K with the continuous radius of curva-
ture ρ. Therefore those isoperimetric deficit upper limits obtained are more
fundamental than Bottema and Pleijel’s results.
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