• Title/Summary/Keyword: texture plane

Search Result 170, Processing Time 0.032 seconds

Texture Development of CeO2 Buffer Layer and its Effect on Superconducting MOD-YBCO Films (CeO2 완충층의 결정성장 특성 및 금속 유기물 증착법으로 제조된 초전도 YBCO층에 미치는 영향)

  • Chung, Kook Chae;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.681-685
    • /
    • 2009
  • $CeO_2$ buffer layers have been deposited on YSZ single crystal substrates via a radio-frequency sputtering method. We focused on the texture development of $CeO_2$ with out-of-plane alignment and its effects on a superconducting YBCO layer, which was deposited by metal organic deposition. $CeO_2$ layers were grown epitaxially on single crystal YSZ substrates and subsequent YBCO layers were also grown epitaxially from $CeO_2$ layers. It was observed that the intensity of $CeO_2$(200) decreased with deposition temperature. ${\theta}-2{\theta}$ scan FWHM values of $CeO_2$(200) were inversely proportional to the peak intensities of $CeO_2$(200). The sample with the lowest $CeO_2$(200) intensity and poor out-of-plane alignment showed a strong reaction with the MOD-YBCO layer resulting in a thicker $BaCeO_3$ layer. The texture and superconducting property of the YBCO layer were affected indirectly by the formation of a $BaCeO_3$ layer at the interface between the $CeO_2$ and YBCO layers.

A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors (RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.319-324
    • /
    • 2016
  • In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.

Manufacturing of YBCO coated conductor using RABiTS as the texture template and pulsed laser for the multi-layer oxide film deposition (RABiTS와 PLD를 이용한 YBCO coated conductor 제조)

  • Park, C.;Ko, R.K.;Shin, K.C.;Song, K.J.;Chung, J.K.;Shi, Dongqi;Yoo, S.I.;Youm, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.104-106
    • /
    • 2003
  • 다층의 산화물 박막으로 이루어진 coated conductor의 제조를 위하여 각층의 증착조건이 최적화되어야 한다. 가공/열처리를 통하여 2축배향성을 가지는 Ni 금속 기판위에 $Y_2O_3$, YSZ, $CeO_2$ 등의 산화물 완충층을 증착한 후 초전도층인 YBCO를 증착하였다. 12도와 8도의 in-plane fwhm (full width at half maximum)과 out-of-plane fwhm을 가지는 Ni 기판을 이용하여 13도와 4.5도의 in-plane 및 out-of-plane fwhm을 가지는 YBCO coated conductor를 제조하였다. 임계온도 (Tc), 임계전류 (Ic), 및 임계전류밀도 (Jc) 는 각각 84K, 3.3A, 및 $310,000\;A/cm^2$ 이었다.

  • PDF

Photometry Data Compression for Three-dimensional Mesh Models Using Connectivity and Geometry Information (연결성 정보와 기하학 정보를 이용한 삼차원 메쉬 모델의 광학성 정보 압축 방법)

  • Yoon, Young-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.160-174
    • /
    • 2008
  • In this paper, we propose new coding techniques for photometry data of three-dimensional(3-D) mesh models. We make a good use of geometry and connectivity information to improve coding efficiency of color, normal vector, and texture data. First of all, we determine the coding order of photometry data exploiting connectivity information. Then, we exploit the obtained geometry information of neighboring vortices through the previous process to predict the photometry data. For color coding, the predicted color of the current vertex is computed by a weighted sum of colors for adjacent vortices considering geometrical characteristics between the current vortex and the adjacent vortices at the geometry predictor. For normal vector coding, the normal vector of the current vertex is equal to one of the optimal plane produced by the optimal plane generator with distance equalizer owing to the property of an isosceles triangle. For texture coding, our proposed method removes discontinuity in the texture coordinates and reallocates texture image segments according to the coding order. Simulation results show that the proposed compression schemes provide improved performance over previous works for various 3-D mesh models.

Plane Surface Generation with a Flat End Mill (평 엔드밀을 이용한 평면가공에서의 가공면 형성기구)

  • Ryu, Si-Hyeong;Kim, Min-Tae;Choe, Deok-Gi;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.234-243
    • /
    • 1999
  • Using the geometric and the vector methods, three dimensional surface texture and roughness models in flat end milling are developed. In these models, rear cutting effect on surface generation is considered along with tool run-out and tool setting error including tool tilting and eccentricity between tool center and spindle rotational center. Rear cutting is the secondary cutting of the already machined surface by the trailing cutting edge. The effects of tool geometry and tool deflection on surface roughness are also considered. For representing the surface texture more practically, three dimentional surface topography parameters such as RMS deviaiton, skewness and kurtosis are introduced and used in expressing the surface texture characteristics. Under various cutting conditions, it is confirmed that the developed models predict the real surface profile precisely. These models could contribute to the cutter design and cutting condition selection for the reduction of machining and manual finishing time.

  • PDF

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure (Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포)

  • Park Kyu-Seop;Kang Chang-Yong;Lee Keun-Jin;Chung Han-Shik;Jung Young-Guan;Fukutomi Hiroshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

Analysis of Twin in Mg Alloys Using Electron Backscatter Diffraction Technique

  • Lee, Jong Youn;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • Electron backscatter diffraction (EBSD) is widely used for quantitative microstructural analysis of the crystallographic nature of variety of materials such as metals, minerals, and ceramics. EBSD can provide a wide range of information on materials including grain size, grain orientation, texture, and phase identity. In the case of metallic alloys, EBSD now has become an essential technique to analyze the texture, particularly when severe deformation is applied to the alloys. In addition, EBSD can be one of the very useful tools in identification of twin, particularly in Mg alloys. In Mg alloys different type of twin can occur depending on the c/a ratio and stacking fault energy on the twinning plane. Such an occurrence of different type of twin can be most effectively analyzed using EBSD technique. In this article, the recent development of Mg alloys and occurrence of twin in Mg are reviewed. Then, recently published example for identification of tension and compression twins in AZ31 and ZX31 is introduced to explain how EBSD can be used for identification of twin in Mg.

Effect of Lubrication on the Evolution of Texture and Microstructure in AA5052 Sheet during Shape Rolling (알루미늄 AA5052 판재의 이형압연 시 집합조직 및 미세조직 발달에 미치는 윤활의 영향)

  • Park, Eun-Soo;Kang, Hyung-Gu;Huh, Moo-Young;Kim, Hwi-Jun;Bae, Jung-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.363-371
    • /
    • 2009
  • The effect of lubrication on the evolution of strain states during shape rolling in AA5052 sheet was studied by the finite element method (FEM) simulation. The strain states calculated by FEM were verified by texture analysis. Shape rolling with and without lubrication produces shape-rolled samples in fairly similar outer shapes, since the distribution of normal strain components is nearly independent of the lubrication condition. In contrast, the distribution of shear strain components strongly depends on the lubrication condition. Shape rolling without lubrication gives rise to the development of strong shear strain gradients leading to the formation of highly inhomogenous textures and microstructures. The {011}//ND fiber develops during rolling with the operation of plane strain plus ${\dot{\varepsilon}}_{22}$.

An Algorithm for the Multi-view Image Improvement with the Resteicted Number of Images in Texture Extraction (텍스쳐 추출시 제한된 수의 참여 영상을 이용한 Multi-view 영상 개선 알고리듬)

  • 김도현;양영일
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 2000
  • '[n this paper, we propose an efficient multi-view image coding algorithm which finds the optimal texture from a restricted number of multi-view image. The X-Y plane of the normalized object space is divided into the triangular patches. The depth of each node is determined by appling a block based disparity compensation method. Thereafter the texture of each patch is extracted by appling an affine transformation based disparity compensation method to the multi-view images. We reduced the number of images needed to determine the texture compared to traditional methods which use all the multi-view image in the texture extraction. The experimental results show that the SNR of images encoded by the proposed algorithm is better than that of images encoded by the traditional method by the approximately 0.2dB for the test sets of multi -view image called dragon, santa, city and kid. Image data recovered after encoding by the proposed method show a better visual results than after using traditional method.

  • PDF

The Influence of W Addition on Cube Textured Ni Substrates for YBCO Coated Conductor (양축 정렬된 Ni 기판의 특성에 미치는 W 첨가의 효과)

  • Kim Kyu Tae;Lim Jun Hyung;Kim Jung Ho;Jang Seok Hern;Kim Ho-Jin;Joo Jinho;Kim Chan-Joong;Song Kyu Jung;Shin Hyung Sub
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • We fabricated cube-textured Ni and Ni-W alloy substrates for coated conductors and characterized the effects of W addition on microstructure, mechanical strength, and magnetic properties of the substrate. Pure Ni and Ni-(2, 3, 5at.%)W alloys were prepared by plasma arc melting, heavily cold rolled and then annealed at various temperatures of $600-1300^{\circ}C$. The texture was evaluated by pole-figure and orientation distribution function (ODF) analysis. Mechanical properties were investigated by micro Vickers hardness and tension test. Ferromagnetism of the substrate was measured by physical property measurement system (PPMS). It was observed that Ni-W substrates had sharp cube texture, and the full-width at half-maximums (FWHMs) of in-plane texture was $^{\circ}$-5.57$4.42^{\circ}$, which is better than that of pure Ni substrate. In addition cube texture of Ni-W substrates was retained at higher temperature up to $1300^{\circ}C$. Microstructural observation showed that the Ni-W substrates had fine grain size and higher mechanical properties than the pure Ni substrate. These improvements are probably due to strengthening mechanisms such as solid solution hardening and/or grain size strengthening. PPMS analysis showed that addition of W effectively reduced saturation magnetization in applied magnetic field and Curie temperature.

  • PDF