Effect of Lubrication on the Evolution of Texture and Microstructure in AA5052 Sheet during Shape Rolling

알루미늄 AA5052 판재의 이형압연 시 집합조직 및 미세조직 발달에 미치는 윤활의 영향

  • Park, Eun-Soo (Korea University, Department of Materials Science and Engineering) ;
  • Kang, Hyung-Gu (Korea University, Department of Materials Science and Engineering) ;
  • Huh, Moo-Young (Korea University, Department of Materials Science and Engineering) ;
  • Kim, Hwi-Jun (Eco-Materials and Processing Department, KITECH) ;
  • Bae, Jung-Chan (Eco-Materials and Processing Department, KITECH)
  • 박은수 (고려대학교 신소재공학과) ;
  • 강형구 (고려대학교 신소재공학과) ;
  • 허무영 (고려대학교 신소재공학과) ;
  • 김휘준 (한국생산기술연구원 에코공정연구부) ;
  • 배정찬 (한국생산기술연구원 에코공정연구부)
  • Received : 2009.01.14
  • Published : 2009.06.25

Abstract

The effect of lubrication on the evolution of strain states during shape rolling in AA5052 sheet was studied by the finite element method (FEM) simulation. The strain states calculated by FEM were verified by texture analysis. Shape rolling with and without lubrication produces shape-rolled samples in fairly similar outer shapes, since the distribution of normal strain components is nearly independent of the lubrication condition. In contrast, the distribution of shear strain components strongly depends on the lubrication condition. Shape rolling without lubrication gives rise to the development of strong shear strain gradients leading to the formation of highly inhomogenous textures and microstructures. The {011}//ND fiber develops during rolling with the operation of plane strain plus ${\dot{\varepsilon}}_{22}$.

Keywords

References

  1. H. Fukuda, J. Jap. Soc. Technol. Plast. 32, 452 (1991)
  2. Y. M. Huang, H. J. Lin, and J. R. Chen, ASME J. Manuf. Sci. Eng. 122, 227 (2000) https://doi.org/10.1115/1.538899
  3. US Patent No. 4, 578, 979, Apr. 1 (1986)
  4. US Patent No. 5, 890, 389, Apr. 6 (1999)
  5. H. Abe, K. Ishida, K. Furuichi, and T. Matsui, Hitachi Cable Rev. 5, 45 (1986)
  6. Y. M. Hwang and J. R. Chen, J. Mater. Process. Technol. 88, 33 (1999) https://doi.org/10.1016/S0924-0136(98)00365-3
  7. H. G. Kang, M. Y. Huh, S. H. Park, and O. Engler, Steel Res. Int. 79, 489 (2008) https://doi.org/10.1002/srin.200806157
  8. H. G. Kang, J. K. Kim, M. Y. Huh, and O. Engler, Mater. Sci. Eng. A 452, 347 (2007) https://doi.org/10.1016/j.msea.2006.10.130
  9. M. Y. Huh, K. R. Lee, and O. Engler, Int. J. Plast. 20, 1183 (2004) https://doi.org/10.1016/j.ijplas.2003.08.003
  10. O. Engler, M. Y. Huh, and C. N. Tome, Metall. Mater. Trans. 31A, 2299 (2000) https://doi.org/10.1007/s11661-000-0146-7
  11. C. H. Choi, J. W. Kwon, K. H. Oh, and D. N. Lee, Acta Mater. 45, 5119 (1997) https://doi.org/10.1016/S1359-6454(97)00169-9
  12. S. Matsuoka, M. Morita, O. Furukimi, and T. Obara, ISIJ Int. 38, 633 (1998) https://doi.org/10.2355/isijinternational.38.633
  13. W. C. Liu, B. Radhakrishnan, Z. Lic, and J. G. Morris, Mater. Sci. Eng. A 472, 170 (2008) https://doi.org/10.1016/j.msea.2007.03.024
  14. K. Mori and K. Osakada, Int. J. Numer. Methods Eng. 30, 1431 (1990) https://doi.org/10.1002/nme.1620300807
  15. D. C. Chen and C. H. Chen, J. Mater. Process. Technol. 177, 104 (2006) https://doi.org/10.1016/j.jmatprotec.2006.04.106
  16. J. J. Nah, H. G. Kang, M. Y. Huh, and O. Engler, Scripta Mater. 58, 500 (2008) https://doi.org/10.1016/j.scriptamat.2007.10.049
  17. K. H. Kim and D. N. Lee, Acta Mater. 49, 2583 (2001) https://doi.org/10.1016/S1359-6454(01)00036-2
  18. J. K. Kim, Y. K. Jee, M. Y. Huh, and H. T. Jeong, J. Mater. Sci. 39, 5365 (2004) https://doi.org/10.1023/B:JMSC.0000039246.72708.0a
  19. H. J. Bunge, Texture Analysis in Materials Science, Butterworths, London (1982)
  20. V. Randle and O. Engler, Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach Sci. Publ., Amsterdam (2000)
  21. E. S. Park, J. C. Lee, M. Y. Huh, H. J. Kim, and J. C. Bae, Mater. Sci. Eng. A 449-451, 704 (2007) https://doi.org/10.1016/j.msea.2006.02.408
  22. E. S. Park, H. G. Kang, J. C. Lee, M. Y. Huh, H. J. Kim, and J. C. Bae, J. Mater. Process. Technol. 187-188, 783 (2007) https://doi.org/10.1016/j.jmatprotec.2006.11.065
  23. R. A. Lebensohn and C. N. Tome, Acta Metall. Mater. 41, 2611 (1993) https://doi.org/10.1016/0956-7151(93)90130-K
  24. C. N. Tome and R. A. Lebensohn, Continuum Scale Simulation of Engineering Materials (eds. D. Raabe, F. Roters, F. Barlat, L.Q. Chen), p.473, Fundamentals, Microstructures, Process Applications, Wiley-VCH, Weinheim, Germany (2004) https://doi.org/10.1002/3527603786.ch23
  25. S. H. Choi and F. Barlat, Scripta Mater. 41, 981 (1999) https://doi.org/10.1016/S1359-6462(99)00241-9
  26. H. R. Wenk, G. Canova, A. Molinari, and H. Mecking, Acta Metall. 37, 2017 (1989) https://doi.org/10.1016/0001-6160(89)90086-2
  27. M. Y. Huh, J. C. Park, and S. Lee, Met. & Mater. 2, 141 (1996) https://doi.org/10.1007/BF03026088
  28. J. Hirsch and K. Lücke, Acta Metall. 36, 2863 (1988) https://doi.org/10.1016/0001-6160(88)90172-1
  29. O. Engler and M. Y. Huh, Mater. Sci. Eng. A 271, 371 (1999) https://doi.org/10.1016/S0921-5093(99)00254-3
  30. Y. H. Kim, Y. S. Cho, and M. Y. Huh, J. Kor. Inst. Met. & Mater. 36, 303 (1998)
  31. M. Y. Huh, S. Y. Cho, and O. Engler, Mater. Sci. Eng. A 315, 35 (2001) https://doi.org/10.1016/S0921-5093(01)01207-2