• 제목/요약/키워드: tetrahedron grids

검색결과 3건 처리시간 0.017초

A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS

  • Nie, Cunyun;Tan, Min
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.765-778
    • /
    • 2012
  • We construct a symmetric finite volume element (SFVE) scheme for a self-adjoint elliptic problem on tetrahedron grids and prove that our new scheme has optimal convergent order for the solution and has superconvergent order for the flux when grids are quasi-uniform and regular. The symmetry of our scheme is helpful to solve efficiently the corresponding discrete system. Numerical experiments are carried out to confirm the theoretical results.

Unstructured Grid Simulations of Supersonic Mixing Using Ramp Injectors

  • Kitazume, Yoshiyuki;Miyaji, Koji
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.433-439
    • /
    • 2004
  • This paper reports the grid resolution issues on the supersonic mixing simulation inside the engine for future aerospace vehicles. Unstructured finite volume method is used for the simulations. Three types of grids are used, namely, hybrid unstructured grids composed of prism and tetrahedron cells, locally refined grids, and hexahedral grids. Hexahedral grids are used to take advantage of fine distribution naturally behind the edge of the ramp where the vortex is generated. These latter two grids show much improved evaluations of the vortex motion and the mixing of the injected and the main flows.

  • PDF

Modeling of internal wave generation near a shelf slope by ocean finite element method

  • Lee, Kwi-Joo;Joa, Soon-Won;Eom, Ki-Chang
    • 수산해양기술연구
    • /
    • 제42권1호
    • /
    • pp.38-43
    • /
    • 2006
  • The 3-D modeling of ocean finite element method(OFEM) using $k-{\varepsilon}$ turbulent model and tetrahedron grids has been used to investigate the internal wave generation during the expansion of the deep water from the open sea to the shelf with a simple shape, which can be widely used in the fields of submarine development, ocean environment and meteorology, etc. In this paper, the detailed configuration of internal wave with its length and height and also the distribution of salinity and turbulent kinematic energy, etc. were derived. It is hoped that this OFEM method can be successfully applied to the numerical calculation of internal wave for and the oceanographic problems (tidal flows around underwater hill, plateau, Georges Bank, etc.) and ocean engineering problems(flow past artificial sea reefs) in future.