• Title/Summary/Keyword: tetrabromodiphenyl ether

Search Result 3, Processing Time 0.019 seconds

Distribution and Potential Toxicological Effects of 2,2',4,4'-tetrabromodiphenyl Ether (BDE-47) as a Endocrine Disrupting Chemical in Human and Animals

  • Jung, Eui-Man;Yang, Hyun;An, Beum-Soo;Lee, Geun-Shik;Hyun, Sang-Hwan;Choi, Kyung-Chul;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Polybrominated diphenyl ethers (PBDEs) are a class of "brominated" (bromine containing) man-made chemicals used as flame retardant additives in plastics, foams, and textiles. PBDEs are found in various environmental contaminants in air, soil, sediment, and water, and 209 individual forms (congeners) of PBDE exist. Among these, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is the dominant congener found in the environment. Exposure to BDE-47 is now worldwide, and levels of BDE-47 have been detected in the blood of animals, including humans. BDE-47 can adversely affect the developmental system in both humans and animals. BDEs have structural similarities to polychlorinated biphenyls and thyroid hormones. However, recent studies have shown that BDEs may act as hormonal disrupting chemicals with detrimental effects. Therefore, a reliable assessment of BDE-47 toxicological action is required to understand the detrimental impacts of BDE-47 on human health. In this review, we overview recent studies on the distribution and potential toxicological effects of BDE-47 in humans and animals.

Toxic Assessment of BDE-47 and BDE-209 using the Population Growth Rates of Skeletonema costatum (해산규조류(Skeletonema costatum)의 개체군 성장률을 이용한 브롬화난연제(BDE-47, BDE-209) 독성평가)

  • Heo, Seung;Lee, Ju-Wook;Park, Yun-Ho;Park, Na-Young;Lee, In-Seok;Hwang, Un-Ki;Choi, Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.385-391
    • /
    • 2018
  • Toxic assessment of PBDEs (BDE-47, BDE-209) has carried out using the rates of population growth in marine phytoplankton, Skeletonema costatum. The population growth rate (r) in S. costatum was determined after 96 hours of exposure to BDE-47 (2,2'4,4'-Tetrabromodiphenyl ether) and BDE-209 (2,2', 4,4'-Decabromodiphenyl ether). It was observed that r-value in the controls (absence PBDEs) was greater than 0.04 and further a decrease was observed in a dose-dependent manner. BDE-47 reduced population growth rate in a dose-dependent manner and a significant reduction occurred at a concentration greater than $0.31mgL^{-1}$, but BDE-209 had no effect on population growth rate even at concentrations greater than $125mgL^{-1}$. The population growth rate in the presence of BDE-47 and BDE-209, $EC_{50}$ values were $0.55mgL^{-1}$ and >$125mgL^{-1}$, and NOEC values were $0.16mgL^{-1}$ and >$125mgL^{-1}$, respectively. Therefore, BDE-47 is considered to be about over 80 times more harmful than BDE-209. In this study, the ecotoxic assessment based on population growth rate in S. costatum can be used as a baseline data for establishment of environment standard quality of BDE-47 and BDE-209 in the marine environment.

Ecotoxic Evaluations of BDE-47 and BDE-209 using Rotifer (Brachionus plicatilis) (해산로티퍼 (Brachionus plicatilis)를 이용한 브롬화난연제 (BDE-47, BDE-209)의 생태독성평가)

  • Choi, Hoon;Lee, Ju-Wook;Park, Yun-Ho;Lee, In-Seok;Heo, Seung;Hwang, Un-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • The toxic assessment of the PBDEs (BDE-47, BDE-209) has been comprehensively investigated by using the rates of survival and population growth in the marine rotifer, Brachionus plicatilis. Chiefly, the survival rate was determined after a measurement of 24 hours of exposure to the BDE-47 (2,2'4,4'-Tetrabromodiphenyl ether) and the BDE-209 (2,2',4,4'-Decabromodiphenyl ether) was performed. The BDE-47 reduced survival rate in dose-dependent manner and a significant reduction were noted to have occurred at a concentration of greater than $3.9mg\;L^{-1}$, but the BDE-209 had no effect which was subsequently observed in this study. The population growth rate (r) was determined after 72 hours of exposure to toxicants in the study. It was observed that the r value in the controls (absence PBDEs) was greater than 0.5, and that it decreased as the dose-dependent manner as recorded. The survival rate when exposed to BDE-47 and BDE-209, $EC_{50}$ value was $13mg\;L^{-1}$ and $>1,000mg\;L^{-1}$, and population growth rate was $3.67mg\;L^{-1}$ and $862.75mg\;L^{-1}$, respectively. Therefore, the BDE-47 is considered to be 76-235 times more harmful than the BDE-209 as noted. In this study, the ecotoxicological bioassay using a noted survival rate and population growth rate of B. plicatilis can be used as a baseline data for the continued establishment of the environmental quality standard of the incidences of the BDE-47 and BDE-209 in a marine environment.