• Title/Summary/Keyword: tether cable

Search Result 10, Processing Time 0.025 seconds

Analysis of 32m aerostat gust load using non-linear cable equation (비선형 테더 방정식을 이용한 에어로스탯 돌풍하중해석)

  • Kang, Wang-Gu;Lee, In;Kim, Dong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.757-761
    • /
    • 2008
  • The aerostat dynamic equation of motion has been built including the tether cable dynamic effects. A numerical program to solve the derived equation of motion has been developed. The dynamic motion of the 32m aerostat has been analyzed under discrete gust and continuous turbulence. The aerostat behaviors under discrete gust which represents a deterministic approach for determining design loads for manned aircraft are solved to verify the effect of aerostat mechanical properties on the aerostat dynamic behavior. Continuous turbulences are simulated for each given altitude, translational mean wind velocity and gust intensity. Dynamic behaviors of the 32m aerostat are simulated for each continuous turbulence conditions. Translational and vertical velocity and pitching behavior and tether reaction force are monitored for each simulation.

  • PDF

A study on Development of 300m Class Underwater ROV (300m급 수중ROV 개발에 관한 연구)

  • 이종식;이판묵;홍석원
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.50-61
    • /
    • 1994
  • A 300 meter class ROV(CROV300) is composed of three parts : a surface unit, a tether cable and an underwater vehicle. The vehicle controller is based on two processors : an Intel 8097-16-bit one chip micro-processor and a Texas Instruments TMS320E25 digital signal processor. In this paper, the surface controller, the vehicle controller and peripheral devices interfaced with the processors are described. These controllers transmit/receive measured status data and control commands through RS422 serial communication. Depth, heading, trimming, camera tilting, and leakage signals are acquired through the embedded AD converters of the 8097. On the other hand, altitude of ROV and lbstacle avoidance signals are processed by the DSP processor and periodically fetched by the 8097. The processor is interfaced with a 4-channel 12-bit D/A converter to generate control signals for DC motors an dseveral transistors to handle the relays for on/off switching of external devices.

  • PDF

Response of Cable-Buoy Systems to Directional Random Waves (다방향 불규칙파랑에 의한 케이블과 정체시스템의 반응)

  • Jeon, Sang-Soo;John W. Leonard
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.25-38
    • /
    • 1993
  • Numerical models of directional wave spectra for the analysis of offshore structural cable responses are verified. Alternative spreading models are used to predict wave-induced flows in water and for mooring systems. Hydrodynamic wave forces upon cable are estimated. using a Morison formula encompassing considerations for drag and for inertial forces both parallel and tangential to the slope of the cable. Numerical analysis for directional random waves. including consideration of displacement and velocity, trajectory, phase plane response. and tension are shown for mooring system cable responses at both the tether point for a buoy and at the anchor point. The effects of wave forces far different drag coefficients, various significant wave heights, and selected wave parameters are considered in the analysis. For the specific systems considered in the examples, it is demonstrated that wave period and height as well as wave spreading function parameters and drag coefficients, have an important effect upon the dynamic responses of the cable-buoy systems.

  • PDF

A Study on Tether Cables Used for Deep Submergence Vehicles (심해 잠수정용 테더 케이블에 관한 연구)

  • H. Shin;D.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.56-67
    • /
    • 1995
  • In this paper, a ship-cable-vehicle system's static configuration is shown obtained by solving cable nonlinear statics. Eigenfrequencies of the cable were calculated by the frequency domain analysis application of the linearized cable dynamic equations. Also extreme tensions in a slack-and-snapping long vertical cable were calculated by the clip-ping-off model.

  • PDF

Trajectory Control of Underwater Robot using Time Delay Control (시간지연제어기법을 이용한 수중로봇의 궤적 제어)

  • Park, Joon-Young;Cho, Byung-Hak;Lee, Jae-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.685-692
    • /
    • 2008
  • In this paper, the trajectory control problem of an underwater robot is addressed. From the viewpoint of control engineering, trajectory control of the underwater robot is not an easy task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy forces and hydrodynamic damping, the difference between the centers of buoyancy and gravity, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring the nonlinear plant dynamics, and was proven to be highly robust against disturbances and uncertainties. We confirmed its effectiveness through experiments.

A Self-contained Wall Climbing Robot with Closed Link Mechanism

  • Park, Hyoukryeol;Park, Jaejun;Taehun Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.573-581
    • /
    • 2004
  • A self-contained wall climbing robot, called MRWALLSPECT (Multi-functional Robot for WALL inSPECTion) II, is developed. It is designed for scanning external surfaces of gas or oil tanks with small curvature in order to find defects. The robot contains all the components for navigation in itself without any external tether cable. Although it takes the basic structure of the sliding body mechanism, the robot has its original characteristic features in the kinematic design with closed link mechanism, which is enabled by adopting a simple and robust gait pattern mimicking a biological system. By employing the proposed link mechanism, the number of actuators is reduced and high force-to-weight ratio is achieved. This paper describes its mechanism design and the overall features including hardware and software components. Also, the preliminary results of experiments are given for evaluating its performances.

Design and Development of a Remotely Operated Vehcile(ROV) (무인잠수정(ROV)의 설계 및 개발)

  • 홍도천;이판묵;이종식;공도식;최학선;현법수
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.62-72
    • /
    • 1993
  • This paper describes the results of 3 years project on the design and development of a 500 meter class ocean survery ROV model. The design concept and the design procedure are given for each component of the ROV model. The design concept and the design procedure are given for each component of the ROV. Special emphasis is laid on the development of the position control system together with the development of the performance evaluation technique.

  • PDF

Development of Inpipe Inspection Robot System for Underground Gas Pipelines (지하매설 가스배관 내부검사용 로봇시스템 개발)

  • 최혁렬;류성무;백상훈;조성휘;송성진;신현재;전재욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • The robotic automation in NonDestructive Testing(NDT) is a promising field of research and it helps to expand the applications of NDT enormously. Especially, in the case of pipelines which are widely used in various industrial facilities, it is required to secure adequate ways of inspection in the usual maintenance activitites. In this paper, we present a robot system for inpipe inspection of underground urban gas pipelines. The robot is configured as an articulated structure like a snake with a tether cable. Two active driving vehicles are located in front and rear of the system, respectively and passive modules such as a NonDestructive Testing module and a control module are chained between the active vehicles. The proposed system has outstanding mobility by employing a new steering mechanism called Double Active Universal Joint, which makes it possible to cope with complicated configurations of underground pipelines. Characteristic features of the system are described and the construction of the system is briefly outlined.

  • PDF

Development of P-SURO II Hybrid Autonomous Underwater Vehicle and its Experimental Studies (P-SURO II 하이브리드 자율무인잠수정 기술 개발 및 현장 검증)

  • Li, Ji-Hong;Lee, Mun-Jik;Park, Sang-Heon;Kim, Jung-Tae;Kim, Jong-Geol;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, we present the development of P-SURO II hybrid AUV (Autonomous Underwater Vehicle) which can be operated in both of AUV and ROV (Remotely Operated Vehicle) modes. In its AUV mode, the vehicle is supposed to carry out some of underwater missions which are difficult to be achieved in ROV mode due to the tether cable. To accomplish its missions such as inspection and maintenance of complex underwater structures in AUV mode, the vehicle is required to have high level of autonomy including environmental recognition, obstacle avoidance, autonomous navigation, and so on. In addition to its systematic development issues, some of algorithmic issues are also discussed in this paper. Various experimental studies are also presented to demonstrate these developed autonomy algorithms.

Study on Unmanned Hybrid Unmanned Surface Vehicle and Unmanned Underwater Vehicle System

  • Jin, Han-Sol;Cho, Hyunjoon;Lee, Ji-Hyeong;Jiafeng, Huang;Kim, Myung-Jun;Oh, Ji-Youn;Choi, Hyeung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • Underwater operating platforms face difficulties regarding power supply and communications. To overcome these difficulties, this study proposes a hybrid surface and underwater vehicle (HSUV) and presents the development of the platform, control algorithms, and results of field tests. The HSUV is capable of supplying reliable power to the unmanned underwater vehicle (UUV) and obtaining data in real time by using a tether cable between the UUV and the unmanned surface vehicle (USV). The HSUV uses global positioning system (GPS) and ultra-short base line sensors to determine the relative location of the UUV. Way point (WP) and dynamic positioning (DP) algorithms were developed to enable the HSUV to perform unmanned exploration. After reaching the target point using the WP algorithm, the DP algorithm enables USV to maintain position while withstanding environmental disturbances. To ensure the navigation performance at sea, performance tests of GPS, attitude/heading reference system, and side scan sonar were conducted. Based on these results, manual operation, WP, and DP tests were conducted at sea. WP and DP test results and side scan sonar images during the sea trials are presented.