• Title/Summary/Keyword: tert-butyl hydroperoxide

Search Result 81, Processing Time 0.024 seconds

Anti-Oxidation Property of Oil-Soluble Zinc-dialkyldithiophosphate (ZnDTP의 산화방지기능에 관한 연구)

  • 김영환
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • In this paper, the fuction of Zinc-dialkyldithiophosphate (ZnDTP) as an oxidation ingibitor of mineral oils was investigated and compared with 2,6-Di-tert-Butyl-4-Methylphenol (DBMP). Oxidation tests were conducted using an oxygen absorption apparatus. ZnDTP showedanti-oxidation property, and length of induction period prolonged by increasing ZnDTP concentration. The anti-oxidation property of ZnDTP was simmilar to that with DBMP. The amount of hydroperoxide decomposition ability with ZnDTP was much greater than that with DBMP, But the rate constant of radical scavenging with ZnDTP was less than that with DBMP. The anti-oxidation property of ZnDTP seems to by both synergy effect of hydroperoxide decomposition ability and radical scavenging ability.

Characteristics of Oxidative Desulfurization(ODS) of Sulfur Compounds in Diesel Fuel over Ti-grafted SBA-15 Catalyst (Ti-grafted SBA-15 촉매를 이용한 경유유분 중의 황화합물의 선택산화탈황 특성)

  • Cho, Chin-Soo;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Chul-Ung;Jeong, Soon-Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • Oxidative desulfurizaton of model sulfur compounds and Industrial diesel fuel(LCO; Light Cycle Oil) over Ti-grafted SBA-15 catalyst was studied in a batch reactor with tert-Butyl Hydroperoxide(TBHP) as oxidant. Effects of Ti loading, TBHP/Sulfur mole ratio, reaction temperature on ODS activity and kinetic parameters were investigated. Ti-grafted SBA-15 catalyst showed higher sulfur removal activity in the oxidative desulfurization reaction of refractory sulfur compounds(DBT and 4, 6-DMDBT) and LCO, suggesting that Ti-grafted SBA-15 catalyst could be a good candidate for ODS catalyst.

Phase equilibria and structure identification of tert-butylhydroperoxide + gaseous clathrate hydrates (이성분계(3차 부틸-히드로과산화물 + 기체) 클러스레이트 하이드레이트의 구조적 특성과 열역학적 안정성에 관한 연구)

  • Youn, Yeobeom;Cha, Minjun;Kwon, Minchul;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.150.1-150.1
    • /
    • 2011
  • Structure-II hydrate has been highlighted due to its higher gas storage capacity and favorable thermodynamic conditions. In this study, we introduce a new structure-II hydrate former, tert-butyl hydroperoxide (TBHP) and confirm the structural characteristics through High-Resolution Powder Diffraction (HRPD), $^{13}C$ solide-state NMR and Ramanspectroscopy. Here,we also investigated the thermodynamic stability of binary(TBHP+gaseous) clathrate hydrates. The experimental data were generated using an isochoric pressure-search method. The dissociation data for (TBHP +gaseous) clathrate hydrates are compared with the other hydrocarbon hydrate and pure gaseous hydrate.

  • PDF

Cytoprotective Constituents of the Stem Barks of Fraxinus rhynchophylla on Mouse Hippocampal HT22 Cells and Their Antioxidative Activity (물푸레나무 수피의 생쥐 해마 유래 HT22 세포 보호와 항산화 활성 물질)

  • Jeong, Gil-Saeng;Yoon, Kwon-Ha;Kim, Hyun-Chul;Oh, Seung-Hwan;Kim, Myong-Jung;Kang, Dae-Gill;Lee, Ho-Sub;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.3 s.150
    • /
    • pp.287-290
    • /
    • 2007
  • Phytochemical investigation of the MeOH extract of the dried stem barks of Fraxinus rhynchophylla Hance (Oleaceae), as guided by cytoprotective activity against tert-butyl hydroperoxide (t-BHP)-induced cell injury in mouse hippocampal HT22 cells, furnished two coumarins, esculetin (1) and fraxetin (2). Compounds 1 and 2 had the significant cytoprotective effects on t-BHP-induced cellular oxidative injury in HT22 cells. Furthermore, compounds 1 and 2 showed potent DPPH radical scavenging effect, exhibiting $IC_{50}$ values of 14.68 and 9.64 ${\mu}M$, respectively.

Protective Effect of the Coffee Diterpenes Kahweol and Cafestol on tert-Butyl Hydroperoxide-induced Oxidative Hepatotoxicity

  • Choi, Sun-Young;Lee, Kyung-Jin;Kim, Hyung-Gyun;Han, Eun-Hee;Chung, Young-Chul;Sung, Nak-Ju;Jeong, Hye-Gwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1386-1392
    • /
    • 2006
  • Kahweol and cafestol significantly reduced t-BHP-induced oxidative injuries in cultured rat hepatocytes, as determined by cell cytotoxicity, intracellular glutathione (GSH) content and lipid peroxidation in a dose-dependent manner. In addition, kahweol and cafestol provided good protection from the t-BHPinduced production of intracellular reactive oxygen species and DNA damage. The in vivo study showed that pretreatment with kahweol and cafestol prior to the administration of t-BHP significantly prevented the increase in serum levels of hepatic enzyme markers (alanine aminotransferase and aspartate aminotransferase) and reduced oxidative stress, such as GSH content and lipid peroxidation, in the liver in a dose-dependent manner. The histopathological evaluation of the livers also revealed that kahweol and cafestol reduced the incidence of liver lesions induced by t-BHP. Taken together, these results support the anti-oxidative role of kahweol and cafestol and demonstrate that kahweol and cafestol can protect hepatocytes from oxidative stress.

Schisandra Chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats

  • Jang, Han I;Do, Gyeong-Min;Lee, Hye Min;Ok, Hyang Mok;Shin, Jae-Ho;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.272-277
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated the antioxidant activities and hepatoprotective effects of Schisandra chinensis Baillon extract (SCE) against tert-butyl hydroperoxide (t-BHP)-induced oxidative hepatic damage in rats. MATERIALS/METHODS: Sprague-Dawley (SD) rats were pretreated with SCE (300, 600, and 1,200 mg/kg BW) or saline once daily for 14 consecutive days. On day 14, each animal, except those belonging to the normal control group, were injected with t-BHP (0.8 mmol/kg BW/i.p.), and all of the rats were sacrificed 16 h after t-BHP injection. RESULTS: Although no significant differences in AST and ALT levels were observed among the TC and SCE groups, the high-dose SCE group showed a decreasing tendency compared to the TC group. However, erythrocyte SOD activity showed a significant increase in the low-dose SCE group compared with the TC group. On the other hand, no significant differences in hepatic total glutathione (GSH) level, glutathione reductase (GR), and glutathione peroxidase (GSH-Px) activities were observed among the TC and SCE groups. Hepatic histopathological evaluation revealed that pretreatment with SCE resulted in reduced t-BHP-induced incidence of lesions, such as neutrophil infiltration, swelling of liver cells, and necrosis. In particular, treatment with a high dose of SCE resulted in induction of phase II antioxidant/detoxifying enzyme expression, such as glutathione S-transferase (GST) and glutamate-cysteine ligase catalytic subunit (GCLC). CONCLUSIONS: Based on these results, we conclude that SCE exerts protective effects against t-BHP induced oxidative hepatic damage through the reduction of neutrophil infiltration, swelling of liver cells, and necrosis. In addition, SCE regulates the gene expression of phase II antioxidant/detoxifying enzymes independent of hepatic antioxidant enzyme activity.

Gymnaster koraiensis and its major components, 3,5-di-O-caffeoylquinic acid and gymnasterkoreayne B, reduce oxidative damage induced by tert-butyl hydroperoxide or acetaminophen in HepG2 cells

  • Jho, Eun Hye;Kang, Kyungsu;Oidovsambuu, Sarangerel;Lee, Eun Ha;Jung, Sang Hoon;Shin, Il-Shik;Nho, Chu Won
    • BMB Reports
    • /
    • v.46 no.10
    • /
    • pp.513-518
    • /
    • 2013
  • We investigated the protective effects of Gymnaster koraiensis against oxidative stress-induced hepatic cell damage. We used two different cytotoxicity models, i.e., the administration of tert-butyl hydroperoxide (t-BHP) and acetaminophen, in HepG2 cells to evaluate the protective effects of G. koraiensis. The ethyl acetate (EA) fraction of G. koraiensis and its major compound, 3,5-di-O-caffeoylquinic acid (DCQA), exerted protective effects in the t-BHP-induced liver cytotoxicity model. The EA fraction and DCQA ameliorated t-BHP-induced reductions in GSH levels and exhibited free radical scavenging activity. The EA fraction and DCQA also significantly reduced t-BHP-induced DNA damage in HepG2 cells. Furthermore, the hexane fraction of G. koraiensis and its major compound, gymnasterkoreayne B (GKB), exerted strong hepatoprotection in the acetaminophen-induced cytotoxicity model. CYP 3A4 enzyme activity was strongly inhibited by the extract, hexane fraction, and GKB. The hexane fraction and GKB ameliorated acetaminophen-induced reductions in GSH levels and protected against cell death.

Antioxidative and Protective Effects of Haeganjeon Extract on Oxidative Damage of Hepatocytes (해간전(解肝煎)의 항산화(抗酸化) 활성(活性) 및 간세포(肝細胞)의 산화적(酸化的) 손상(損傷)에 대한 보호효과(保護效果))

  • Ahn Byung-Tae;Kim Jong-Dae;Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.127-141
    • /
    • 2002
  • Objectives: Haeganjeon(HGJ) has been used for the treatment of liver disease in traditional medicine. The present study was carried out to evaluate the antioxidant and protective effects of HGJ extract on oxidative damage of hepatocytes by tert-butyl hydroperoxide(t-BHP). Methods: In the linoleic acid water-alcohol system, the levels of lipid peroxide(LPO) were determined by TBA method. The scavenging effect of HGJ on ${\alpha},{\alpha}-diphenyl-{\beta}-picrylhydrazyl$(DPPH) radical was determined according to the method of Hatano. In the Fenton system(ferrous ion reaction with hydrogen peroxide), the levels of hydroxyl radical induced LPO in rat liver homogenate were determined according to the method of TBA. Inhibitory effect of HGJ on superoxide generation was measured by xanthine-xanthine oxidase system. In order to evaluate antioxidative activity of HGJ in the liver cell, cultured normal rat liver cells(Ac2F) were prepared and incubated with or without HGJ. After 18hr, cells placed in DMEM medium without serum, and then incubated with 1mM tert-butyl hydroperoxide(t-BHP) for 2hrs. Viable cells were detected by MTT assay. Conclusions: In the linoleic acid autoxidation system, HGJ extract significantly inhibited the time course of the lipid peroxidation. These effects were similar to those of BHA HGJ extracts showed about 70% scavenging effect on DPPH radical. And HGJ extract inhibited the lipid peroxide formation in rat liver homogenate induced by hydroxyl radical derived from Fenton system. In addition, HGJ extract protected the cell death induced by t-BHP and significantly increased cell viability in the normal rat liver cell. These result indicated that HGJ extract might playa protective role against oxidative hepatic cell injury by means of free radical scavenger.

  • PDF

Hepatoprotective Effects of Poly Herbal Formulation (Hepa-1000) on t-BHP Induced Toxicity in Human Hepatoma Cells (간기능 개선용 복합 식물 추출물(Hepa-1000)의 tert-butyl hydroperoxide(t-BHP)로 유도한 간세포 독성에 대한 보호 효과)

  • Lee, Eu-Gene;Kim, Kyung-Bum;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1121-1126
    • /
    • 2006
  • In the present study, the potential hepatoprotective effects of poly herbal formulation, Hepa-1000, against oxidative damages induced by t-BHP were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. The t-BHP induced considerable cell damage in HepG2 cells was shown by significant glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) leakage, and increased lipid peroxidation. Hepa-1000-treated cells showed an increased resistance to oxidative challenge, as revealed by higher survival capacity than the one of control cells against t-BHP induced oxidative stress and hepatotoxicity. In addition, the Hepa-1000 had hepatoprotective effects lowering the activity of GOT and LDH, simultaneously. That is, it could inhibit the cell membrane damages resulting in the increased activities of GOT and LDH in the cell culture media. Furthermore, the Hepa-1000 could reduce t-BHP enhanced lipid peroxidation, which was evaluated by measuring the production of malonedialdehyde. Based on the data described above, it could be suggested that the Hepa-1000 has significant hepatoprotective effects and plays a protective role against lipid peroxidation by free radicals.