• Title/Summary/Keyword: tert-alcohol

Search Result 40, Processing Time 0.026 seconds

부탄 이용 미생물에 의한 MTBE(Methyl tert-Butyl Ether) 분해 특성

  • 장순용;백승식;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.136-139
    • /
    • 2001
  • In this study, we have examined potential degradation of MTBE (methy1 tert-butyl ether) by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown n-butane, and the disappearance of TBA after complete degradation of MTBE suggest the further degradation of TBA. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane-utilizing bacteria. MTBE was degraded ENV425 and mixed culture grown n-butane, and TBA (tert-butyl alcohol) was produced as product of MTBE oxidation. TBA production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. The observed maximal transformation yield (T$_{y}$) were 44.7 and 34.0 (nmol MTRE degraded/$\mu$mol n-butane Utilized) by ENV425 and mixed culture, respectively.y.

  • PDF

Study about The Effect Alcohol and The Temperature Exert on $TiO_2$ Particle Production by Sedimentation Method (침전법을 이용한 이산화티탄 입자 제조에 알콜과 온도가 미치는 영향에 관한 연구)

  • Kim, Duck-Sool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.495-502
    • /
    • 2012
  • Using the Sedimentation method it's possible to get $TiO_2$ particle from which by this research, $TiO_2$ particle was produced. The parameter in the kind of the temperature and the alcohol solvent used $TiO_2$ particle production investigated crystal structure of $TiO_2$ particle and the influence exerted on the size of the particle and the form. After scanning electron microscope (SEM) analyzed methyl alcohol, iso-propylalcohol and tert-butylalcohol used by a solvent at the $TiO_2$ particle production, iso-propylalcohol was most effective. And after an thermogravimetric analyzer method was used, the anatase structure was maintained $500^{\circ}C$ by $200^{\circ}C$, but it was converted by the rutile structure by $800^{\circ}C$.

Evaluation of Intrinsic Bioremediation of Methyl Tert-butyl Ether (MTBE) Contaminated Groundwater

  • Chen, Colin S.;Tien, Chien-Jun;Zhan, Kai-Van
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.9-17
    • /
    • 2014
  • This paper reported the use of real-time polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and the culture-based method in the intrinsic bioremediation study at a petroleum contaminated site. The study showed that phenol hydroxylase gene was detected in groundwater contaminated with benzene, toluene, ethylbenzene, xylene isomers (BTEX) and methyl tert-butyl ether (MTBE). This indicated that intrinsic bioremediation occurred at the site. DGGE analyses revealed that the petroleum-hydrocarbon plume caused the variation in microbial communities. MTBE degraders including Pseudomonas sp. NKNU01, Bacillus sp. NKNU01, Klebsiella sp. NKNU01, Enterobacter sp. NKNU01, and Enterobacter sp. NKNU02 were isolated from the contaminated groundwater using the cultured-based method. Among these five strains, Enterobacter sp. NKNU02 is the most effective stain at degrading MTBE without the addition of pentane. The MTBE biodegradation experiment indicated that the isolated bacteria were affected by propane. Biodegradation of MTBE was decreased but not totally inhibited in the mixtures of BTEX. Enterobacter sp. NKNU02 degraded about 60% of MTBE in the bioreactor study. Tert-butyl alcohol (TBA), acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry during MTBE degraded by the rest cells of Enterobacter sp. NKNU02. The effectiveness of bioremediation of MTBE was assessed for potential field-scale application.

Contribution of Electrophilic Interference on Solvolytic Reactions in Fluorinated Alcohol Mixtures

  • Dae Dong Sung;Yang Hee Kim;Kyu Chul Kim;Tae Seop Uhm;Ikchoon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.449-453
    • /
    • 1991
  • The degree of electrophilic interference on the solvolytic reactions of model substrates has been studied in fluorinated alcohol solvent mixtures. With variation of solvent composition of 1,1,1,3,3,3-hexafluoro-2-propanol(HFP) and 2-propanol (PrOH) mixtures, the magnitude of electrophilic solvent assistance was changed inversely with the degree of nucleophilic solvent assistance. The contribution of electrophilic interference for 2-adamantyl tosylate showed higher than tert-butyl chloride in HFP-PrOH mixtures. Through a correlation of nucleophilic solvent assistance and electrophilic solvent assistance based on the method of double differences, HFP-PrOH mixture showed a big discrepancy from non-fluorinated alcohol systems.

Transglycosylation of Permethylated Methyl D-Glycopyranosides in the Presence of Trimethylsilyl Trifluoromethanesulfonate

  • 이창귀;전정호;서영환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1233-1238
    • /
    • 1998
  • Transglycosylation reactions among methyl 2,3,4,6-tetra-O-methyl-D-glycopyranosides and isomeric butyl alcohols or cyclohexanol took place in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) in dichloromethane. The extent of the reaction after 1 h and 24 h from mixing was determined by gas chromatography (GC). Anomerization of the substrate took place during the course of transglycosylation, which favors α anomer regardless of the anomeric configurations of the starting glycosides. Transglycosylation also favors the a anomer regardless of the steric bulkiness of the alcohol. tert-Butyl alcohol did not give any transglycosylation, suggesting the steric hindrance of approaching the bulky alcohol to the oxonium intermediate. A mechanism for the transglycosylation have been proposed.

Novel organic catalysts for nucleophilic fluorination including F-18 radiofluorination

  • Na, Hyeon Su;Kim, Dong Wook
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.116-121
    • /
    • 2017
  • To overcome the low reactivity and solubility of alkali metal fluorides (MFs), various types of phase transfer catalysts (PTCs) have been developed over the last decades. However, since the fluoride activated by such PTC sometimes has a strong basicity, it may cause various side reactions such as elimination reaction or hydroxylation reaction in the nucleophilic fluorination reaction. Also, they may cause separation problems in the compound purification process. In recent advanced study, various PTCs have been developed to solve these problem of conventional catalyst. In this review, we would like to introduce three kinds of novel multifunctional organic catalysts such as bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA), easy separable pyrene-tagged ionic liquid (PIL) by reduced graphene oxide (rGO), and tri-tert-butanolamine organic catalyst.

Highly Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by Novel Chiral tert-Amino Alcohols

  • Zhang, Cong-Hai;Yan, Sheng-Jiao;Pan, Sheng-Qiang;Huang, Rong;Lin, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.869-873
    • /
    • 2010
  • A series of novel chiral tert-amino alcohols 4a-h derived from enantiomerically pure phenylalanine were synthesized efficiently and used as chiral ligands in the catalytic enantioselective ethylation of aldehydes with diethylzinc (diethylzinc-to-aldehyde addition). The use of 10 mol % of the amino alcohols led to the corresponding sec-alcohols with excellent enantioselectivities (up to 100% ee) and high yields.

Analysis of tert-Butanol, Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Kim, Tae-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3049-3052
    • /
    • 2009
  • Methyl tert-butyl ether (MTBE) is added to gasoline to enhance the octane number of gasoline, tert-butyl alcohol (TBA) is major degradation intermediate of MTBE in environment, and benzene, toluene, ethyl benzene and xylene (BTEX) are also major constituents of gasoline. In this study, a simplified headspace analysis method was adapted for simultaneous determination of MTBE, TBA and BTEX in ground water samples. The sample 5.0 mL and 2 g NaCl were placed in a 10 mL vial and the solution was spiked with fluorobenzene as an internal standard and sealed with a cap. The vial was placed in a heating block at 85 $^{\circ}C$ for 30 min. The detection limits of the assay were 0.01 ${\mu}$g/L for MTBE and BTEX, and 0.02 ${\mu}$g/L for TBA. The method was used to analyze 110 ground water samples from various regions in Korea, and to survey the their background concentration in ground water in Korea. The samples revealed MTBE concentrations in the range of 0.01 - 0.45 ${\mu}$g/L (detection frequency of 57.3%), TBA concentrations in the range of 0.02 - 0.08 ${\mu}$g/L (detection frequency of 5.5%), and total BTEX concentrations in the range of 0.01 - 2.09 ${\mu}$g/L (detection frequency of 87.3%). The developed method may be used when simultaneously determining the amount of MTBE, TBA and BTEX in water.

A Kinetic Study on the Oxidation of Diphenylmethane under Aliquat 336 Phase Transfer Catalyst (Aliquat 336 상이동 촉매하에서 디페닐메탄의 산화반응에 관한 속도론적 연구)

  • Lee, Hwa-Soo;Moon, Jeong-Yeol;Na, Suk-En;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.373-377
    • /
    • 1994
  • A mechanism for the synthesis of benzophenone from oxidation of diphenylmethane under Aliquit 336 phase transfer catalyst is investigated in this study. The production rate of benzophenone increased with the increasing amount of Allquat 336 and potassium tert-butoxide. At low concentrations of diphenylmethane and oxygen, the reaction order was first with the concentrations of diphenylmethane and oxygen respectively, but it approached to zero order at high concentrations. Tert-butyl alcohol, by-product of the reaction, inhibited the formation of benzophenone. Experimental results fit fairly well to the following initial reaction rate equation derived from reaction mechanism. $$({\gamma}_{BP})_0={\frac{k_1k_3k_5[QCI]_0[DPM]_0[PTB]_0[O_2]_0}{k_2k_4[TBA]_0+k_2k_5[O_2]_0+k_3k_5[O_2]_0[DPM]_0}}$$

  • PDF

Nucleophilic Fluorination Reactions in Novel Reaction Media for $^{18}F$-Fluorine Labeling Method ($^{18}F$-플루오린 표지를 위한 신개념 반응용매에서 친핵성 불소화 반응)

  • Kim, Dong-Wook;Jeong, Hwan-Jeong;Lim, Seok-Tae;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2009
  • Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography(PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with $^{18}F$-fluorine. In this review we describe recent methods and novel trends for the introduction of $^{18}F$-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic $^{18}F$-fluorination of some halo- and mesyloxyalkanes to the corresponding $^{18}F$-fluoroalkanes with $^{18}F$-fluoride obtained from an $^{18}O(p,n)^{18}F$ reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for $^{18}F$-fluorine labeling. Ionic liquid method is rapid and particularly convenient because $^{18}F$-fluoride in $H_2O$ can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with $^{18}F$-fluorine for PETimaging, and it is illustrated by the synthesis of $^{18}F$-fluoride radiolabeled molecular imaging probes, such as $^{18}F$-FDG, $^{18}F$-FLT, $^{18}F$-FP-CIT, and $^{18}F$-FMISO, in high yield and purity and in shorter times compared to conventional syntheses.