• Title/Summary/Keyword: terpene alcohol

Search Result 25, Processing Time 0.022 seconds

Development of Aqueous/Semi-Aqueous Cleaning Agent and its Field Application to Cleaning Process of Electronic Parts (수계/준수계 세정제의 개발 및 전자부품 세정공정 현장적용 연구)

  • Kim, Han-Seong;Cha, An-Jeong;Bae, Jae-Heum;Lee, Ha-Yeoul;Lee, Myung-Jin;Park, Byeong-Deog
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.61-72
    • /
    • 2004
  • In this study, aqueous/semi-aqueous cleaning agents which consist of organic solvent, surfactant, cosurfactant, and water were developed by changing formulation parameters such as organic solvent type and contents, surfactant type and contents, and cosurfactant/surfactant(A/S) ratio, etc.. And physical properties and flux removal of the formulated cleaning agents have been evaluated. Also, the performance of oil-water separation from the rinse water contaminated during the cleaning process was evaluated for its recycling. The formulated cleaning agents in this work expected to have good penetration because of their low viscosity and low surface tension values of 30.2~32.5 dyne/cm. The flux removal with the terpene type cleaning agent was higher than that with hydrocarbon type cleaning agent and two commercial products (CPA(commercial product A), CPB(commercial product B)). And the performance of oil-water separation by gravity settling from the rinse water contaminated with formulated cleaning agent and soils was shown to be very good. The cleaning agents developed in this work were applied to surface mounting technology(SMT) cleaning process for manufacturing electronic parts at L electronic company. As a result, the newly developed cleaning agents showed two times better cleaning speed for removal of solder cream than the conventional ond containing ethanol and IPA(isopropyl alcohol). In addition, malodor and VOC problems generated by the previous organic cleaning agents have been solved in the manufacturing field through introduction of the non-volatile and environmental-friendly cleaning agents to the field.

  • PDF

Aromatic Ingredients and Distinct Flavors of the Koguma-Soju Produced from Korean Sweet Potato Varieties Yeonmi, Jeungmi, Shincheonmi, and Shinyeulmi (한국산 고구마 품종인 연미, 증미, 신천미, 신율미를 이용하여 제조한 고구마 소주의 향기성분의 특성)

  • Kim, Myoung Hui;Yoshitake, Kazuya;Takamine, Kazunori;Lee, Hyeong-Un;Kim, Won Sin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.51-55
    • /
    • 2015
  • Four varieties of the Korean sweet potato, Yeonmi, Jeungmi, Shincheonmi, and Shinyeulmi, were chosen to prepare the distilled koguma-soju (sweet potato-soju). The relationship between the flavor of the koguma-soju and the content of monoterpene alcohols (MTAs) was studied. The MTAs investigated here were linalool, nerol, geraniol, citronellol, and ${\alpha}$-terpineol. The ranges of MTA concentrations in the koguma-soju made from the four sweet potato varieties were $14.0-16.6{\mu}g/L$ for nerol, $24.8-34.7{\mu}g/L$ for linalool, $32.8-38.5{\mu}g/L$ for geraniol, $37.8-54.2{\mu}g/L$ for citronellol, and $76.6-94.7{\mu}g/L$ for ${\alpha}$-terpineol. Geraniol, nerol, and linalool were found in lower concentrations, while ${\alpha}$-terpineol was present in a higher concentration compared to their average content in the imo-shochu, a distilled Japanese sweet potato-soju. The concentrations of citronellol in the koguma-soju and imo-shochu were similar. The flavor evaluation tests revealed that the koguma-soju produced from the Yeonmi variety had a leafy vegetable or a grass-like, sharp flavor, whereas the Jeungmi-soju was characterized by a fruity or a sulfur-like sharp taste. Floral, vanilla-like, and mild flavors were predominant in the Shincheonmi-soju, while the Shinyeulmi-soju had either a fruity, citrus-like flavor or a rubber-like, rough taste. This study demonstrates that koguma-soju made from different sweet potato varieties have unique characteristic flavors.

Volatile Flavor Components in Various Varieties of Peach(Prunus persica L.) Cultivated in Korea (국내산 복숭아의 품종별 휘발성 향기성분)

  • 박은령;조정옥;김경수
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.206-215
    • /
    • 1999
  • Volatile flavor components in five varieties, Bekdo, Chundo, Yumung, Daegubo and Hwangdo, of peach (Prunus persica L.) were extracted by SDE (Simultaneous steam distillation and extraction) method using the mixture of n-pentane and diethylether(1:1, v/v) as an extract solvent. Analysis of the concentrate by capillary gas chromatography and gas chromatography-mass spectrometry led to the identification of 83, 85, 70, 74 and 66 components in Bekdo, Chundo, Yumung, Daegubo and Hwangdo, respectively. Aroma patterns (29 alcohols, 27 ketones, 18 aldehydes, 9 esters, 5 ethers, 3 acids, 6 terpene and derivatives, and 26 miscellaneous) were identified and quantified in five cultivars. Ethyl acetate, hexanal, o-xylene, (E)-2-hexenal, hexanol, (E)-2-hexen-1-ol, benzaldehyde, r-decalactone and r-dodecalactone were the main components in each samples, though there were several differences in composition of volatile components. Beside C$\_$6/ compounds, a series of saturated and unsaturated r- and $\delta$-lactones ranging from chain length C$\_$6/ to C$\_$l2/, with concentration maxima for r-decalactone and r-dodecalactone, were a major class of constituents. Lactones and peroxidation products of unsaturated fatty acid (i.e. C$\_$6/ aldehydes and alcohols) were major constituents of the extract.

  • PDF

Studies on Nutritional Compositions of the Jehotang 2. Organic Acid Content and Volatile Aroma Components (제호탕(醍蝴湯)의 일반영양성분에 관한 연구 2. 유기산 및 휘발성 향기성분 조성)

  • 윤숙자;조후종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.654-658
    • /
    • 1996
  • Organic acid content and volatile aroma components in Jehotang were investigated. Organic acids were detceted by HPLC and it is composed of formic acid(0.07%). lactic acid(0.22%) acetic acid (0.32%), and citric acid(3.17%), the last of which is one of the noteworthy features of Jehotang contributing greatly to its sour flavor and taste. Among the 39 volatile aroma components, whose peaks were identified by GC/MSD, and whose structures were analyzable, 17 kinds of hydrocarbon(30.81%) one kind of aldehyde(7.18%), 2 kinds of ketone(4.79%), 8 kinds of terpene(25.96%) a variety of acids (16%), 2 kinds of alcohol(5.42%), 2 kinds of phenol(2.76%) and 3 kinds of the others(7.68%) were found. The hydrocarbons, terpenes and acids occupied 70% of the aroma components, contributing to and also composing the particular flavor of Jehotang. Extracted pigments from the Jehotang showed maximum light absorbance in the wave length ranges of 200~400nm, showing a high degree of light adsorption of yellow to red color.

  • PDF

Investigation of Active Antifungal Compounds of Essential Oil from Chamaecyparis obtusa Against Dermatophytes, Microsporum canis and Trichophyton Mentagrophytes (피부사상균 Microsporum canis 및 Trichophyton mentagrophytes에 대한 편백정유의 항진균활성물질 탐색)

  • Park, Mi-Jin;Lee, Soo-Min;Gwak, Ki-Seob;Jeung, Eui-Bae;Chang, Je-Won;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.72-78
    • /
    • 2005
  • The present study was conducted to evaluate the application of Chamaecyparis obtusa and to investigate potential utilization of essential oil from C. obtusa as plant-based medicine. The antifungal activity of essential oil from leaves and twigs of C. obtusa (Sieb. Et Zucc) was determined and the major components of active fractions against Microsporum canis (KCTC6591) and Trichophyton mentagrophytes (KCTC6077) were identified by GC/MS analysis. In treatment of essential oil from C. obtusa, the strain M. canis was more resistant than the other, T. mentagrophytes. In the agar diffusion assay, essential oil from C. obtusa inhibited hyphal growth of M. canis and T. mentagrophytes at the concentration of more than 5,000 ppm. The zones named B and C in the TLC assay of essential oil from C. obtusa showed antifungal activities. Among four sub-fractions of n-hexane extract from B and C zones, named as B-1, B-2, C-1 and C-2, the C-2 showed the highest antifungal activity. Instrumental GC/MS analysis for sub-fractions showed that a major component of C-1 was ${\alpha}$-terpineol as terpene alcohol, while C-2 contained sesquiterpenes such as elemol, cedrol and eudesmol.