• Title/Summary/Keyword: terminal restriction fragment length polymorphism (t-RFLP)

Search Result 45, Processing Time 0.031 seconds

Enrichment of Ammonia-Oxidizing Bacteria for Efficient Nitrification of Wastewater

  • KIM WON-KYOUNG;CUI RONG;JAHNG DEOKJIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.772-779
    • /
    • 2005
  • Ammonia-oxidizing bacteria (AOB) were enriched by repeating fed-batch cultivations in an AOB-selective medium of activated sludges from a domestic wastewater treatment plant. Enriched culture showed strong capabilities of ammonia oxidation [0.810 mg $NH_4^+$-N/mg mixed liquor suspended solids (MLSS)$\cdot$day] as well as $NO_x^-$-N production (0.617 mg $NO_x^-$-N/ mg MLSS$\cdot$day). Degree of enrichment was examined through fluorescent in situ hybridization (FISH) analyses using an AOB-specific Cy3-labeled oligonucleotide probe (NSOl90) and terminal-restriction fragment length polymorphism (T-RFLP) analyses. FISH analyses confirmed that the fraction of AOB among 4',6-diamidino-2-phenylindole (DAPI)-stained cells increased from about less than $0.001\%$ to approximately $42\%$ after enrichment of AOB, and T-RFLP analyses showed that bacterial community became simpler as enrichment was continued. When the enriched culture of AOB was added (150 mg/l as dry suspended solid) to the normal activated sludge (3,000 mg/l as dry suspended solid), nitrification efficiencies were improved from 0.020 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.041 mg $NO_x^-$-N/mg MLSS$\cdot$day in a synthetic wastewater and also from 0.0007 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.0918 mg $NO_x^-$-N/mg MLSS$\cdot$day in a real domestic wastewater. Therefore, it is expected that this enrichment method could be used for improving efficiency of nitrification in wastewater treatment plants.

Lung Microbiome Analysis in Steroid-Naïve Asthma Patients by Using Whole Sputum

  • Jung, Jae-Woo;Choi, Jae-Chol;Shin, Jong-Wook;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung Whui;Park, Heung-Woo;Cho, Sang-Heon;Kim, Kijeong;Kang, Hye-Ryun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.165-178
    • /
    • 2016
  • Background: Although recent metagenomic approaches have characterized the distinguished microbial compositions in airways of asthmatics, these results did not reach a consensus due to the small sample size, non-standardization of specimens and medication status. We conducted a metagenomics approach by using terminal restriction fragment length polymorphism (T-RFLP) analysis of the induced whole sputum representing both the cellular and fluid phases in a relative large number of steroid $na{\ddot{i}}ve$ asthmatics. Methods: Induced whole sputum samples obtained from 36 healthy subjects and 89 steroid-$na{\ddot{i}}ve$ asthma patients were analyzed through T-RFLP analysis. Results: In contrast to previous reports about microbiota in the asthmatic airways, the diversity of microbial composition was not significantly different between the controls and asthma patients (p=0.937). In an analysis of similarities, the global R-value showed a statistically significant difference but a very low separation (0.148, p=0.002). The dissimilarity in the bacterial communities between groups was 28.74%, and operational taxonomic units (OTUs) contributing to this difference were as follows: OTU 789 (Lachnospiraceae), 517 (Comamonadaceae, Acetobacteraceae, and Chloroplast), 633 (Prevotella), 645 (Actinobacteria and Propionibacterium acnes), 607 (Lactobacillus buchneri, Lactobacillus otakiensis, Lactobacillus sunkii, and Rhodobacteraceae), and 661 (Acinetobacter, Pseudomonas, and Leptotrichiaceae), and they were significantly more prevalent in the sputum of asthma patients than in the sputum of the controls. Conclusion: Before starting anti-asthmatic treatment, the microbiota in the whole sputum of patients with asthma showed a marginal difference from the microbiota in the whole sputum of the controls.

PCR-T- RFLP Analyses of Bacterial Communities in Activatced Sludges in the Aeration Tanks of Domestic and Industrial Wastewater Treatment Plants

  • RHO SANG CHUL;AN NAN HEE;AHN DAE HEE;LEE KYU HO;LEE DONG HUN;JAHNG DEOK JIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.287-295
    • /
    • 2005
  • In order to compare bacteria] community structure and diversity in activated sludges, terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16s rDNAs was analyzed for 31 domestic and industrial wastewater treatment plants (WTPs). Regardless of the characteristics of the wastewaters, the bacteria] community structures of activated sludges appeared diverse and complex. In particular, activated sludges in domestic WTPs contained higher bacterial diversity than those in industrial WTPs. It was also found that terminal restriction fragment (T-RF) profiles derived from domestic WTPs were very similar with each other, although activated sludges were collected from different plants at different locations. Interestingly, activated sludges of a WTP where restaurant and toilet sewages of a company were managed showed a bacterial community structure similar to that of domestic WTPs. Activated sludges in leather industria] WTPs also showed a high similarity. However, other wastewaters possessed different bacterial communities, so that overall similarity was as low as about $30\%$. Since activated sludges from WTPs for domestic wastewaters and a company sewage appeared to hold similar bacterial communities, it was necessary to confirm if similar wastewaters induce a similar bacterial community. To answer this question, analysis of T-RFs for activated sludges, taken from another 12 domestic WTPs, was conducted by using a 6­FAM$^{TM}$-Iabeled primer and an automated DNA sequencer for higher sensitivity. Among 12 samples, it was again found that T-RF profiles of activated sludges from Yongin, Sungnam, Suwon, and Tancheon domestic WTPs in Kyonggi-do were very similar with each other. On the other hand, T-RF profiles of activated sludges from Shihwa and Ansan WTPs were quite different from each other. It was thought that this deviation was caused by wastewaters, since Ansan and Shihwa WTPs receive both domestic and industrial wastewaters. From these results, it was tentatively concluded that similar bacterial communities might be developed in activated sludges, if WTPs treat similar wastewaters.

Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes

  • Jeong, Dawoon;Lee, Chang-Ha;Lee, Seockheon;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.395-404
    • /
    • 2019
  • The influence of chlorine on marine bacterial communities was examined in this study. A non-chlorine-adapted marine bacterial community (NCAM) and a chlorine-adapted bacterial community (CAM, bacterial community treated with $0.2mg-Cl_2/L$ chlorine) were cultivated for 1 month. A distinct difference was observed between the NCAM and CAM, which shared only eight operational taxonomic units (OTUs), corresponding to 13.1% of the total number of identified OTUs. This result suggested that chlorine was responsible for the changes in the marine bacterial communities. Kordiimonas aquimaris was found to be a chlorine-resistant marine bacterium. The effect of intermittent chlorination on the two marine biofilm communities formed on the reverse osmosis (RO) membrane surface was investigated using various chlorine concentrations (0, 0.2, 0.4, 0.6 and 0.8 mg $Cl_2/L$). Although the average number of adherent marine bacteria on the RO membrane over a period of 7 weeks decreased with increasing chlorine concentration, disinfection efficiencies showed substantial fluctuations throughout the experiment. This is due to chlorine depletion that occurs during intermittent chlorination. These results suggest that intermittent chlorination is not an effective disinfection strategy to control biofilm formation.

Community characteristics of early biofilms formed on water distribution pipe materials (수도관 재질에 형성된 초기 생물막 형성 미생물의 군집 특성)

  • Kim, Yeong-Kwan;Park, Sung-Gu;Lee, Dong-Hun;Choi, Sung-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2012
  • Annular Biofilm Reactor (ABR) equipped with coupons of three different pipe materials (STS 304, PVC, PE) was used to generate drinking water biofilm samples. The level of assimilable organic carbon (AOC) during the sample generation period was $37.3{\mu}g/L$, and this level did not seem to be low enough to limit the formation of biofilm in this study. Terminal-restriction fragment length polymorphism (T-RFLP) analyses determined T-RF profile as early as 3 h of exposure on PVC coupons. Average surface roughness ($R_a$) measured by atomic force microscopic analyses was 125.7 nm for PVC, and this value was higher than for STS (71.6 nm) and PE (74.0 nm). However, biofilm formation was faster on STS (6 h) than on PE (12 h), which indicated that surface roughness might not be the only factor that controlled the initiation of biofilm development. Upon detection of the T-RF peaks, richness (S) and diversity indices such as Shannon (H) and Simpson (1/D) demonstrated a rather slow increase until 48 h followed by rapid increase regardless of the pipe materials. Differences of microbial community structures among the biofilm samples were determined based on the cluster analysis using Jaccard coefficients (Sj). Biofilm communities could be divided into two distinct groups according to the exposure time regardless of the pipe materials. First group contained a young (< 48 h) biofilm samples (10 out of 11) but second group contained a mature (${\geq}$ 48 h) samples (11 out of 14). Results suggested that, due to the complexity of biofilm, the targeting of the first group of cluster was crucial for optimizing the management of drinking water distribution systems and controlling microbial growth.

Rice genotype, parental lineage and physiological tolerance to soil salinity shapes the community structure of rice seed bacterial endophytes

  • Walitang, Denver I.;Kim, Kiyoon;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.342-342
    • /
    • 2017
  • Rice seeds are a home to endophytic bacterial communities which serve as a source of the plant's endophytes. As rice undergo physiological and adaptive modifications through cross breeding in the process of attaining salinity tolerance, this may also lead to changes in the endophytic bacterial community especially those residing in the seeds. This study explores the community structure of seed bacterial endophytes as influenced by rice parental lineage, genotype and physiological adaptation to salinity stress. Endophytic bacterial diversity was studied through culture dependent technique, cloning and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The richness of ribotypes ranges from 5-14 T-RFs corresponding to major groups of bacterial endophytes in the seeds. Endophytic bacterial diversity of the salt-sensitive IR29 is significantly more diverse compared to those of salt-tolerant cultivars. Proteobacteria followed by Actinobacteria and Firmicutes dominated the overall endophytic bacterial communities of the indica rice seeds based on 16S rDNA analysis of clones and isolates. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Multivariate analysis showed that the bacterial endophytic community and diversity of rice seeds are mainly influenced by their host's genotype, physiological adaptation to salt stress and parental lineage.

  • PDF

Methane Production and T-RFLP Patterns of Methanogenic Bacteria Dependent on Agricultural Methods (농법에 따른 메탄생성과 메탄생성 세균의 T-RFLP 패턴)

  • Kim, Hun-Soo;Cho, Ju-Sik;Park, Kyeong-Ryang
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied soil components, methane production, the number of methanogens, and T-RFLP patterns dependent on agricultural methods with the change of seasons. There is no regular increase or decrease tendency of the most soil components followed by sampling period. And the water content in soil was higher in October than May. Also a lot of methanogens existed in soil, and acetotrophs were relatively of smaller number than hydogenotrophs and formate utilizing methanogens using MPN (most probable number) enumeration. In the experiment using the formate, it was used from the first week, and only a minute amount was detecte after four weeks. However in the acetate, it was increased until the third week, and after that was consumed. And there was higher methane production for all soil samples which administered with the hydrogen spike. The activity of methanogens was higher in the organic and low-agrichemical agricultural method samples, and the organic agricultural method had high methanogen activity among the other samples. A result of T-RFLP pattern of mcrA gene digested with Sau96I, methanogen community have a little relation with agricultural methods and seasons. This results also agreed to no critical difference the soil components dependent on agricultural methods, but some analytical data have a positive relationship with a agricultural methods. Therefor we could concluded that the comparison study of community for soil bacteria sufficiently could be useful for the microbiological indicator.

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF

Effect of Glycyrrhiza Varieties WON-GAM on Composition of Fecal Microbiota in DSS-induced Colitis Model

  • Sa-Haeng Kang;Young-Jae Song;Dong-Keun Kim;Jeong-Hyang Park;Ju-Ryun Soh;Jong-Hyun Lee;Wonnam Kim;Hyo-Jin An;Jae-Ki Chang;Jeonghoon Lee;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.80-80
    • /
    • 2020
  • Glycyrrhizae Radix (GR), commomly known as liquorice, is a medicinal and edible plant widely used in East Asia with its pharmacological properties. Currently, Glycyrrhiza uralensis, G. glabra and G. inflata are used for pharmaceutical purposes in Korea and then the improved Glycyrrhiza varieties, WON-GAM (WG) has been developed by Korea Rural Development Administration. To evaluate equivalence of efficacy, several comparative studies between already-registered species and new cultivars have been conducted. To evaluate equivalence of efficacy, several comparative studies between already-registered species and new cultivars have been conducted. The aim of this study was to evaluate the effect of WG on fecal microbiota in DSS-induced colitis model. Fecal microbiota was analyzed by terminal restriction fragment length polymorphism (T-RFLP). The composition of the fecal microbiota did not show a specific pattern based on experimental groups; however, a tendency toward an increase in the proportion of Lactobacillales was observed. Glycyrrhiza varieties could change composition of fecal microbiota in DSS-induced colitis model. This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014246022020)" Rural Development Administration.

  • PDF