DOI QR코드

DOI QR Code

Lung Microbiome Analysis in Steroid-Naïve Asthma Patients by Using Whole Sputum

  • Jung, Jae-Woo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Jae-Chol (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Shin, Jong-Wook (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Kim, Jae-Yeol (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Park, In-Won (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Byoung Whui (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Park, Heung-Woo (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Cho, Sang-Heon (Department of Internal Medicine, Seoul National University College of Medicine) ;
  • Kim, Kijeong (Department of Microbiology, Chung-Ang University College of Medicine) ;
  • Kang, Hye-Ryun (Department of Internal Medicine, Seoul National University College of Medicine)
  • Received : 2016.02.16
  • Accepted : 2016.05.10
  • Published : 2016.07.01

Abstract

Background: Although recent metagenomic approaches have characterized the distinguished microbial compositions in airways of asthmatics, these results did not reach a consensus due to the small sample size, non-standardization of specimens and medication status. We conducted a metagenomics approach by using terminal restriction fragment length polymorphism (T-RFLP) analysis of the induced whole sputum representing both the cellular and fluid phases in a relative large number of steroid $na{\ddot{i}}ve$ asthmatics. Methods: Induced whole sputum samples obtained from 36 healthy subjects and 89 steroid-$na{\ddot{i}}ve$ asthma patients were analyzed through T-RFLP analysis. Results: In contrast to previous reports about microbiota in the asthmatic airways, the diversity of microbial composition was not significantly different between the controls and asthma patients (p=0.937). In an analysis of similarities, the global R-value showed a statistically significant difference but a very low separation (0.148, p=0.002). The dissimilarity in the bacterial communities between groups was 28.74%, and operational taxonomic units (OTUs) contributing to this difference were as follows: OTU 789 (Lachnospiraceae), 517 (Comamonadaceae, Acetobacteraceae, and Chloroplast), 633 (Prevotella), 645 (Actinobacteria and Propionibacterium acnes), 607 (Lactobacillus buchneri, Lactobacillus otakiensis, Lactobacillus sunkii, and Rhodobacteraceae), and 661 (Acinetobacter, Pseudomonas, and Leptotrichiaceae), and they were significantly more prevalent in the sputum of asthma patients than in the sputum of the controls. Conclusion: Before starting anti-asthmatic treatment, the microbiota in the whole sputum of patients with asthma showed a marginal difference from the microbiota in the whole sputum of the controls.

Keywords

References

  1. Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet 2006;368:804-13. https://doi.org/10.1016/S0140-6736(06)69290-8
  2. Cosentini R, Tarsia P, Canetta C, Graziadei G, Brambilla AM, Aliberti S, et al. Severe asthma exacerbation: role of acute Chlamydophila pneumoniae and Mycoplasma pneumoniae infection. Respir Res 2008;9:48. https://doi.org/10.1186/1465-9921-9-48
  3. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 2007;357:1487-95. https://doi.org/10.1056/NEJMoa052632
  4. Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol 2015;135:25-30. https://doi.org/10.1016/j.jaci.2014.11.011
  5. Holt PG. The mechanism or mechanisms driving atopic asthma initiation: the infant respiratory microbiome moves to center stage. J Allergy Clin Immunol 2015;136:15-22. https://doi.org/10.1016/j.jaci.2015.05.011
  6. Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma. Curr Opin Rheumatol 2015;27:373-80. https://doi.org/10.1097/BOR.0000000000000191
  7. Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL. The microbiology of asthma. Nat Rev Microbiol 2012;10:459-71. https://doi.org/10.1038/nrmicro2801
  8. Huang YJ. The respiratory microbiome and innate immunity in asthma. Curr Opin Pulm Med 2015;21:27-32. https://doi.org/10.1097/MCP.0000000000000124
  9. Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, et al. Human microbiome and its association with health and diseases. J Cell Physiol 2016;231:1688-94. https://doi.org/10.1002/jcp.25284
  10. Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One 2014;9:e100645. https://doi.org/10.1371/journal.pone.0100645
  11. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013;131:346-52. https://doi.org/10.1016/j.jaci.2012.11.013
  12. Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J 2016;47:792-800. https://doi.org/10.1183/13993003.00405-2015
  13. National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma: summary report 2007. J Allergy Clin Immunol 2007;120(5 Suppl):S94-138. https://doi.org/10.1016/j.jaci.2007.09.029
  14. Sohn SW, Lee HS, Park HW, Chang YS, Kim YK, Cho SH, et al. Evaluation of cytokine mRNA in induced sputum from patients with allergic rhinitis: relationship to airway hyperresponsiveness. Allergy 2008;63:268-73.
  15. Marsh TL. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 1999;2:323-7. https://doi.org/10.1016/S1369-5274(99)80056-3
  16. Schutte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, et al. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008;80:365-80. https://doi.org/10.1007/s00253-008-1565-4
  17. Andoh A, Imaeda H, Aomatsu T, Inatomi O, Bamba S, Sasaki M, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol 2011;46:479-86. https://doi.org/10.1007/s00535-010-0368-4
  18. Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2011;301:G799-807. https://doi.org/10.1152/ajpgi.00154.2011
  19. Andoh A, Sakata S, Koizumi Y, Mitsuyama K, Fujiyama Y, Benno Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm Bowel Dis 2007;13:955-62. https://doi.org/10.1002/ibd.20151
  20. Andoh A, Tsujikawa T, Sasaki M, Mitsuyama K, Suzuki Y, Matsui T, et al. Faecal microbiota profile of Crohn's disease determined by terminal restriction fragment length polymorphism analysis. Aliment Pharmacol Ther 2009;29:75-82. https://doi.org/10.1111/j.1365-2036.2008.03860.x
  21. Matsumoto M, Sakamoto M, Hayashi H, Benno Y. Novel phylogenetic assignment database for terminal-restriction fragment length polymorphism analysis of human colonic microbiota. J Microbiol Methods 2005;61:305-19. https://doi.org/10.1016/j.mimet.2004.12.009
  22. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004;42:5176-83. https://doi.org/10.1128/JCM.42.11.5176-5183.2004
  23. Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD. Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2003;41:3548-58. https://doi.org/10.1128/JCM.41.8.3548-3558.2003
  24. Cardenas PA, Cooper PJ, Cox MJ, Chico M, Arias C, Moffatt MF, et al. Upper airways microbiota in antibiotic-naive wheezing and healthy infants from the tropics of rural Ecuador. PLoS One 2012;7:e46803. https://doi.org/10.1371/journal.pone.0046803
  25. Park H, Shin JW, Park SG, Kim W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One 2014;9:e109710. https://doi.org/10.1371/journal.pone.0109710
  26. Venkataraman A, Bassis CM, Beck JM, Young VB, Curtis JL, Huffnagle GB, et al. Application of a neutral community model to assess structuring of the human lung microbiome. MBio 2015;6:e02284-14.
  27. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13:440-7. https://doi.org/10.1038/embor.2012.32
  28. Fortenberry JD. The uses of race and ethnicity in human microbiome research. Trends Microbiol 2013;21:165-6. https://doi.org/10.1016/j.tim.2013.01.001
  29. Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog 2010;2:19. https://doi.org/10.1186/1757-4749-2-19
  30. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014;44:842-50. https://doi.org/10.1111/cea.12253
  31. Webley WC, Aldridge KL. Infectious asthma triggers: time to revise the hygiene hypothesis? Trends Microbiol 2015;23:389-91. https://doi.org/10.1016/j.tim.2015.05.006
  32. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 2011;127:372-81. https://doi.org/10.1016/j.jaci.2010.10.048
  33. Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2013;188:1193-201. https://doi.org/10.1164/rccm.201304-0775OC
  34. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010;5:e8578. https://doi.org/10.1371/journal.pone.0008578
  35. Perez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ, Crandall KA. Dual transcriptomic profiling of host and microbiota during health and disease in pediatric asthma. PLoS One 2015;10:e0131819. https://doi.org/10.1371/journal.pone.0131819
  36. Chotirmall SH, Burke CM. Aging and the microbiome: implications for asthma in the elderly? Expert Rev Respir Med 2015;9:125-8. https://doi.org/10.1586/17476348.2015.1002473
  37. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20:159-66. https://doi.org/10.1038/nm.3444
  38. Vital M, Harkema JR, Rizzo M, Tiedje J, Brandenberger C. Alterations of the murine gut microbiome with age and allergic airway disease. J Immunol Res 2015;2015:892568.

Cited by

  1. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification vol.58, pp.3, 2016, https://doi.org/10.1007/s13353-017-0394-5
  2. Human Microbe-Disease Association Prediction Based on Adaptive Boosting vol.9, pp.None, 2016, https://doi.org/10.3389/fmicb.2018.02440
  3. Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma vol.9, pp.None, 2016, https://doi.org/10.3389/fphys.2018.01168
  4. PRWHMDA: Human Microbe-Disease Association Prediction by Random Walk on the Heterogeneous Network with PSO vol.14, pp.8, 2016, https://doi.org/10.7150/ijbs.24539
  5. The crosstalk between microbiome and asthma: Exploring associations and challenges vol.49, pp.8, 2016, https://doi.org/10.1111/cea.13444
  6. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network vol.20, pp.1, 2019, https://doi.org/10.1186/s12859-019-3066-0
  7. The Effects of Corticosteroids on the Respiratory Microbiome: A Systematic Review vol.8, pp.None, 2021, https://doi.org/10.3389/fmed.2021.588584
  8. Microbiome Research and Multi-Omics Integration for Personalized Medicine in Asthma vol.11, pp.12, 2016, https://doi.org/10.3390/jpm11121299