Browse > Article

Enrichment of Ammonia-Oxidizing Bacteria for Efficient Nitrification of Wastewater  

KIM WON-KYOUNG (Department of Environmental Engineering and Biotechnology, Myongji University)
CUI RONG (Department of Environmental Engineering and Biotechnology, Myongji University)
JAHNG DEOKJIN (Department of Environmental Engineering and Biotechnology, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.4, 2005 , pp. 772-779 More about this Journal
Abstract
Ammonia-oxidizing bacteria (AOB) were enriched by repeating fed-batch cultivations in an AOB-selective medium of activated sludges from a domestic wastewater treatment plant. Enriched culture showed strong capabilities of ammonia oxidation [0.810 mg $NH_4^+$-N/mg mixed liquor suspended solids (MLSS)$\cdot$day] as well as $NO_x^-$-N production (0.617 mg $NO_x^-$-N/ mg MLSS$\cdot$day). Degree of enrichment was examined through fluorescent in situ hybridization (FISH) analyses using an AOB-specific Cy3-labeled oligonucleotide probe (NSOl90) and terminal-restriction fragment length polymorphism (T-RFLP) analyses. FISH analyses confirmed that the fraction of AOB among 4',6-diamidino-2-phenylindole (DAPI)-stained cells increased from about less than $0.001\%$ to approximately $42\%$ after enrichment of AOB, and T-RFLP analyses showed that bacterial community became simpler as enrichment was continued. When the enriched culture of AOB was added (150 mg/l as dry suspended solid) to the normal activated sludge (3,000 mg/l as dry suspended solid), nitrification efficiencies were improved from 0.020 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.041 mg $NO_x^-$-N/mg MLSS$\cdot$day in a synthetic wastewater and also from 0.0007 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.0918 mg $NO_x^-$-N/mg MLSS$\cdot$day in a real domestic wastewater. Therefore, it is expected that this enrichment method could be used for improving efficiency of nitrification in wastewater treatment plants.
Keywords
Enrichment; AOB; nitrification; FISH; T-RFLP;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Alfreider, A., J. Pemthaler, R. Amann, B. Sattler, F.-A. Glockner, A. Wille, and R. Psenner. 1996. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl. Environ. Microbiol. 62: 2138-2144
2 Burrell, P. C., C. M. Phalen, and T. A. Hovanec. 2001. Identification of bacteria responsible for ammonia oxidation in fresh aquaria. Appl. Environ. Microbiol. 67: 5791-5800   DOI   ScienceOn
3 Haner, A., P. Hohener, and J. Zeyer. 1995. Degradation of pxylene by a denitrifying enrichment culture. Appl. Environ. Microbiol. 61: 3185-3188
4 Hatayama, R., K. Chiba, K. Noda, R. Takahashi, T. Kanehira, K. Serata, M. Shinohara, and T. Tokuyama. 1999. Characteristics of a high-concentration-ammonium sulfate-requiring ammonia oxidizing bacterium isolated from deodorization plants of chicken farms. J. Biosci. Bioeng. 87: 245-249   DOI   ScienceOn
5 Jeon, C. O., S. H. Woo, and J. M. Park. 2003. Microbial communities of activated sludge perfonning enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose. J. Microbiol. Biotechnol. 13: 385-393
6 Kamer, M. and J. A. Fuhnnan. 1997. Detennination of active marine bacterioplankton: A comparison of universal 16S rRNA probes, autoradiography, and nucleoid staining. Appl. Environ. Microbial. 63: 1208-1213
7 Lee, J. W., E. S. Choi, K. J. Oil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001 Removal behavior of biological nitrogen and phosphorus, and prediction of microbial community composition with its function, in an anaerobicanoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
8 Lipponen, M. T. T., M. H. Suutari, and P. J. Martikainen. 2002. Occurrence of nitrifYing bacteria and nitrification in Finnish drinking water distribution systems. Water Res. 36: 4319-4329   DOI   ScienceOn
9 Princic, A, J. Mahne, F. Megusar, E. A. Paul, and J. M. Tiedje. 1998. Effects of pH, oxygen, ammonium concentration on the community structure of nitrifYing bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590
10 Bae, J.-W., J.-J. Kim, C. O. Jeon, K. Kim, J. J. Song, S.-G. Lee, H. Poo, C.-M. Jung, Y-H. Park, and M.-H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1012
11 Ahn, I.-S., M. W. Kim, H.-J. La, K.-M. Chio, and J.-C. Kwon. 2003. Bacterial community composition of activated sludge relative to type and efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15-21
12 Aoi, Y, T. Miyoshi, T. Okamoto, S. Tsuneda, A. Hirata, A. Kitayama, and T. Nagamune. 2000. Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J. Biosci. Bioeng. 90: 234-240   DOI
13 Manz, W., U. Szewzyk, P. Ericsson, R. Amann, K.-H. Schleifer, and T.-A. Stenstrom. 1993. In situ indentification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59: 2293-2298
14 Martinez-Murcia, A. J., S. G. Acinas, and F. RodriguezValera. 1995. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbial. Ecol. 17: 247-256   DOI
15 Liu, W.- T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522
16 Ravenschlag, K., K. Sahm, and R. Amann. 2001. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol. 67: 387-395   DOI   ScienceOn
17 Kim, B.-S., R-M. Oh, H. Kang, S.-S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
18 Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol. 66: 2943-2950   DOI   ScienceOn
19 Park, J. B., H. W. Lee, S.-Y. Lee, J. O. Lee, J. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929-935
20 Randall, C. W., J. L. Barnard, H. D. Stensel, and P. E. 1992. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal, pp. 25-56. Technomic Publishing Company, Inc., U.S.A
21 Grommen, R., J. V. Hauteghem, M. V. Wambeke, and W. Verstraete. 2002. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture 211: 115-124   DOI   ScienceOn
22 Eriksson, M., E. Sodersten, Z. Yu, Ci Dalhammar, and W. W. Mohn. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69: 275-284   DOI   ScienceOn
23 Neufeld, J. D. and R. Knowles. 1999. Inhibition ofnitrifiers and methanotrophs from an agricultural humisol by allylsufide and its implications for environmental studies. Appl. Environ. Microbial. 65: 2461-2465
24 Kawaharasaki, M., H. Tanaka, T. Kanagawa, and K. Nakamura. 1999. In situ identification of polyphosphateaccumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4',6-_ diamidino-2-phenylindole (DAPI) at a polyphosphate-probing concentration. Water Res. 33: 257-265   DOI   ScienceOn
25 Wagner, M., G. Rath, R. Amanm, H.-P. Koops, and K.-H. Schleifer. 1995. In situ identification of ammonia oxidizing bacteria. System. Appl. Microbiol. 18: 251-264   DOI   ScienceOn
26 Halling-Sorensen, B. and S. E. Jorgensen. 1993. The removal of Nitrogen Compounds from Wastewater, pp. 55-118. Elsevier, Amsterdam, The Netherlands
27 Hiraishi, A., M. Iwasaki, and H. Shinjo. 2000. Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge. J. Biosci. Bioeng. 90: 148-146
28 Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil sedimentation samples. Appl. Environ. Microbial. 65: 4715-4724
29 EI-Fantroussi, S. 2000. Enrichment and molecular characterization of a bacterial culture that degrades methoxymethyl urea herbicides and their aniline derivatives. Appl. Environ. Microbiol. 66: 5110-5115   DOI   ScienceOn
30 Keener, W. K., S. A. Russell, and D. J. Arp. 1998. Kinetic characterization of the inactivation of ammonia monooxygenase in Nitrosamanas europaea by alkyne, aniline and cyclopropane derivatives. Biochim. Biaphys. Acta 1388: 373-385   DOI   ScienceOn
31 Gupta, A. B. and S. K. Gupta. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Res. 35: 1714-1722   DOI   ScienceOn
32 American Public Health Association, American Water Works Association, and Water Environment Federation. 1998. Standard Methods for the Examination of Water and Wastewater; 20th Ed. Washington, DC, U.S.A
33 Chang, Y.-C., K. Jung, and Y-S. Yoo. 2003. Anaerobic degradation of cis-1,2-dichloroethylene by cultures enriched from a landfill leachate sediment. J. Microbiol. Biotechnol. 13: 366-372
34 Atlas, R. M. 1993. Microbiological Media, pp. 675. CRC Press, Inc., U.S.A
35 Townshend, A., P. Worsfold, S. Haswell, H. Werner, and L Wilson. 1995. Encyclopedia of Analytical Science. Academic Press Inc., U.S.A