• Title/Summary/Keyword: tentativeness

Search Result 19, Processing Time 0.019 seconds

Elementary Science-gifted Teachers' Views and Attitudes Toward Teaching on Nature of Science (초등 과학영재 지도교사의 과학의 본성에 대한 인식 및 교수태도 분석)

  • Lim, Sung-Man;Cheong, Woon-Young;Yang, Il-Ho
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.396-404
    • /
    • 2010
  • This study aimed to investigate a perception of teachers engaged in special education for scientifically gifted regarding nature of science and identify attitudes toward teaching nature of science. The sample of this study consists of 122 science teachers who are teaching or taught students attending gifted classes of any primary school in Korea and any gifted education center of every District Office of Education. We made a partial amendment of a VOSE that was developed by Chen(2006) and then used. We tested their perception and attitudes in regard to nature of science. In terms of nature of science, we devide it into 7 sub-areas to analyse. For attitudes toward teaching nature of science, we investigate and analyse following 5 sub-areas; tentativeness of scientific knowledge, nature of observation, scientific methods, theories and laws and subjectivity and objectivity. The result showed that the generally teachers have a desirable recognitions about a nature of science. For attitudes toward teaching nature of science, the teachers showed that they have positive attitudes. However between degrees of teachers' recognition about a nature of science and attitudes toward teaching nature of science showed a low correlation. To increase their understanding of nature of science and develop attitudes toward teaching nature of science, there should be more training time for the teachers and training contents also should be changed. In addition, we hope that this study contribute to develop contents and direction of training for the teachers as a basic reference.

  • PDF

Semantic Network Analysis of Science Gifted Middle School Students' Understanding of Fact, Hypothesis, Theory, Law, and Scientificness (언어 네트워크 분석법을 통한 중학교 과학영재들의 사실, 가설, 이론, 법칙과 과학적인 것의 의미에 대한 인식 조사)

  • Lee, Jun-Ki;Ha, Minsu
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.823-840
    • /
    • 2012
  • The importance of teaching the nature of science (NOS) has been emphasized in the science curriculum, especially in the science curriculum for science-gifted students. Nevertheless, few studies concerning the structure and formation of students' mental model on NOS have been carried out. This study aimed to explore science-gifted students' understanding of 'fact', 'hypothesis', 'theory', 'law', and 'scientificness' by utilizing semantic network analysis. One hundred ten science-gifted middle school students who were selected by a national university participated in this study. We collected students' written responses of five items and analyzed them by the semantic network analysis(SNA) method. As a result, the core ideas of students' understanding of 'fact' were proof and reality, of 'hypothesis' were tentativeness and uncertainty, of 'theory' was proven hypothesis by experimentation, of 'law' were absoluteness and authority, and of 'scientificness' were factual evidence, verifiability, accurate and logical theoretical framework. The result of integrated semantic network illustrated that the viewpoint of science-gifted students were similar to absolutism and logical positivism (empiricism). Methodologically, this study showed that the semantic network analysis method was an useful tool for visualization of students' mental model of scientific conceptions including NOS.

The Influences of Integrated Science Developed Under the 2009 Revised National Curriculum on Students' Views on Nature of Science and Science-Technology-Society Relationship, Interest in Science, and Science Aspiration (2009 개정 교육과정에 의한 융합형 과학이 학생들의 과학의 본성과 STS에 대한 견해, 과학에 대한 흥미 및 포부에 미치는 영향)

  • Yang, Chanho;Kim, Minhwan;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.4
    • /
    • pp.549-555
    • /
    • 2015
  • In this study, we investigated the influences of Integrated Science on the views of 10th graders with regards to the nature of science (NOS), STS, interest in science, and science aspiration, in order to explore the effects of Integrated Science developed under the 2009 Revised National Curriculum. Participants in this study were 214 10th graders in Seoul. The survey was administered at the beginning and at the end of the Integrated Science course. The analyses of the results revealed that there was no statistically significant difference in the scores of the pre-test and post-test on the NOS survey. However, the post-test scores of the tentativeness of scientific knowledge and the use of imagination, which are the sub-constructs of the NOS, were found to be significantly lower than the pre-test scores. There were no statistically significant differences in the frequencies of the responses to each item of the STS survey. The pre-test and post-test scores of the interest in science and the science aspiration were also not significantly different. The results indicated that Integrated Science did not have any impact on students' views on NOS, STS, interest in science, and science aspiration. Educational implications of these findings are discussed.

Development and Application of a Science History Role-Playing Game for High School Students' Understanding of Nature of Science: Focus on Storytelling of the Continental Drift Theory (고등학생의 과학의 본성 이해를 위한 과학사 롤플레잉게임(SHRPG) 개발 및 적용 -대륙이동설 스토리텔링을 중심으로-)

  • Shim, Eun-Ji;Choe, Seung-Urn;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.45-57
    • /
    • 2019
  • NOS education through the history of science is regarded effective. However, science teaching has been criticized for not considering the interest of the learners enough and providing the context of learning themes that hinder the understanding of NOS. This study intends to convey the NOS element through the rich context of storytelling. The theme of the story is the history of continental drift, in which, the debate of many scientists and Wegener's creativity are prominent. Of the various media that deliver storytelling, the most powerful medium that leads to personal immersion is computer games, and among many kinds of games, the main genre of storytelling is role-playing games (RPGs). We developed the science history role-playing game (SHRPG) focusing on continental drift. The game development procedure followed Kim's 4F process (2017), which consists of the Figure Out, Focus, Fun Design, and Finalize. The story was constructed based on the NOS elements of Lederman et al. (2002), namely creativity and imagination demand, subjectivity, socio-cultural personality and tentativeness, which are all present in the story of the continental drift theory. The mechanics and rules of the RPG included quests, rewards, quizzes, NOS scores, and rankings. In the final phase of development, the game developed was pilot tested four times. The results of the tests showed that students' understanding of NOS through SHRPG has increased, especially in the creativity domain. The students' satisfaction with the fun, sympathy, and immersion during the game was very high.

The Characteristics of NOS Lessons by Science Teachers: In the Context of 'Science Inquiry Experiment' Developed Under the 2015 Revised National Curriculum (과학교사의 과학의 본성(NOS) 수업에서 나타나는 특징 분석 -2015 개정 교육과정에 따른 '과학탐구실험'의 맥락에서-)

  • Kim, Minhwan;Shin, Haemin;Noh, Taehee
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.5
    • /
    • pp.362-375
    • /
    • 2022
  • In this study, science teachers' NOS lessons were observed and the characteristics of the lessons were analyzed. Three science teachers who taught NOS in the 'Science Inquiry Experiment' developed under the 2015 revised curriculum participated in the study. Their NOS lessons were observed and interviews were conducted before and after lessons. The collected data were analyzed using analytical induction and constant comparative method. The analyses of the result revealed the teachers' naive views on NOS were also revealed during the lessons. There were some cases where they showed naive views during the lessons even if they showed informed views in the interviews. Although the domains of NOS taught by them were diverse, all of them taught 'tentativeness' and considered this an important goal. They tended to teach NOS with content related with their major, and teaching NOS was found to be deeply related to their major. In the activity where students learn NOS by inferring the unknown object, teachers disclosed the unknown object, which is unlike the rule of the activity. They thought that could help students' learning. At last, although they emphasized teaching NOS, they either did not assess NOS or assessed NOS in a limited way. Based on the results, some directions for teacher education and follow-up study are suggested.

Analysis of Changes in the Views on Nature of Science (NOS) Appeared in Pre-Service Elementary School Teachers' Science Journals (초등 예비교사의 과학 일기에 나타난 과학의 본성에 대한 인식 변화 유형 분석)

  • Sungman Lim;Jung-Yun Shin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.30-42
    • /
    • 2023
  • The purpose of this study is to quantitatively and qualitatively analyze the science journals written by pre-service elementary school teachers, and to categorize the view on the nature of science and the process of their change. For this purpose, 112 science journals written by 13 pre-service elementary school teachers were analyzed. The frequency of each area was analyzed using the research framework of the four areas of the nature of science, and the pattern of change in perspective on the nature of science was inductively derived and classified using the VNOS-C test analysis framework. As a result, The nature of scientific thinking, nature of scientific knowledge, nature of STS, and nature of scientific inquiry were described in relatively similar proportions, but among them, The nature of scientific thinking appeared in the largest percentage, and the nature of scientific inquiry was described in the smallest percentage. The variability of scientific knowledge, the importance of empirical evidence, and the positive and negative effects of science were especially intensively addressed. In addition, the changing aspects of pre-service elementary school teachers' perspectives on the nature of science could be categorized into 'naive view maintenance type', 'informed view maintenance type', 'regression type', 'development type', and 'mixed type'. The element of 'the empirical nature of scientific knowledge' showed various patterns of change depending on the students, and most of the students maintained a informed view on the tentativeness of scientific knowledge for several sessions.

Scientifically Gifted Students' Views on the Nature of Science (과학영재들의 과학의 본성에 대한 인식)

  • Kim, Kyoung-Dae;Kang, Soon-Min;Lim, Jai-Hang
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.6
    • /
    • pp.743-752
    • /
    • 2006
  • The purpose of this study is to gain an understanding of scientifically gifted students' views on the nature of science. A multiple-choice format questionnaire was administered to 237 Korean 10th, 11th and 12th graders at the Korea Science Academy. The differences and similarities by gender and experience of R&E program on the students' views of the nature of science were investigated. The questionnaire developed by Lim(2004) was implemented for this investigation. We found that the majority of scientifically gifted students had highly possessed the tentativeness of scientific knowledge. The students who experienced R&E program have relatively high apprehension of scientists' motivation for researches and activities in social context compared to the students who did not experience an R&E program. Scientifically gifted students had relatively high apprehension that government should not control researches of scientists and relatively low apprehension of social responsibilities of scientists comparing to general high school students. The experience on R&E program was identified as a factor to effect changes in the students' views on the nature of science. The study has implications for the development of gifted program and curriculum such as running and assessing R&E program, and also the pre-service preparation of science teacher, teacher education reformat in both the practical and the policy levels.

Analysis of Inquiry Unit of Science 10 in Terms of Nature of Science (과학의 본성의 측면에서 10학년 과학의 탐구 단원 분석)

  • Cho, Jung-Il
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.685-695
    • /
    • 2008
  • An analysis on the Inquiry unit of Science 10 textbooks was conducted in terms of nature of science (NOS). The subject of the analysis was instructional objectives, activities and sentences in the unit of ten Science 10 textbooks. Contents of the instructional objectives could be grouped into nature of science, nature of scientists, scientific methods, and Science-Technology-Society. The concrete nature of scientific knowledge (SK) and constructing scientific theory or model, however, were not found in the objectives. The total number of activities in the Inquiry unit was 38. Seventeen out of them were presented without any supplemental or introductory materials, and 21 activities were provided with information followed by questions, discussions or investigations. For the most activities, any clear statements about NOS elements and desired/informed views of NOS were not made. The sentences of the Inquiry units were mixed up with constructivist and inductive views on NOS. The definition of science tended to be described based on the inductive view. And the generation of SK tended to be described as discovering regularities in natural phenomena rather than constructing theories. For science teachers who want to teach NOS effectively, stating clear learning objectives and elements of NOS and presenting reading materials with relevant views on nature of science were necessary.

What Do Scientists Think about the Nature of Science? - Exploring Views of the Nature of Science of Korean Scientists Related with Life Science Area (우리나라 생명과학 관련 분야 재미 과학자들은 어떻게 과학의 본성을 이해하고 있는가?)

  • Lee, Young Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.677-691
    • /
    • 2014
  • Understanding of the nature of science (NOS) has been a consistent topic as one of the most important goals in science education for the past several decades. Even though there is a variety of research related with the NOS conducted in science education, few researches has been conducted for the conception of scientists regards to the nature of science (Bayir et al., 2014; Taylor et al., 2008; Wong & Hudson, 2008). Recently, researchers in science education turned their attention to identifying views of scientists about the nature of science since they recognized the importance of participation of scientists in science education (Southerland et al., 2003; Taylor et al., 2008). This study was conducted to examine the Korean scientists' views of the nature of science. Through the use of semi-structured questionnaire and in-depth interview the views of 35 scientists who belong to the Korean-American Scientists and Engineers Association (KSEA) regards to the nature of science were explored. Findings show that while the scientists have more informed views with respect to the tentativeness of scientific knowledge, cultural and social influence embedded in science, the limitation of science, and the collaboration of science with others, the scientists have more na${\ddot{i}}$ve views about the distinction between laws and theories, the existence of a universal scientific method, and the importance of imagination and creativity. As such, it can be assumed that the scientists cannot conceptualize their notion in a philosophical sense even though they are engaged in scientific work in reality (Bayir et al., 2014).