• Title/Summary/Keyword: tension pressure

Search Result 631, Processing Time 0.026 seconds

A Feasibility Study of Seawater Injection Nozzle Prototype Development by Using 3D Printing (3D 프린팅을 이용한 해수분사용 노즐 시제품 개발의 가능성 연구)

  • Yoon, Seok-Tea;Park, Jong-Chun;Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • The seawater cooling system of naval ships is installed to remove the toxic substances generated by CBR (Chemical, Biological, and Radiological) warfare and reduce the infrared signature of naval ships from outside the hull. The dispersion range of the nozzle is determined according to the injection pressure of seawater and the nozzle type. Therefore, it is necessary to select the appropriate injection pressure and design the optimal nozzles to increase the seawater dispersion area and maximize the efficiency of the cooling system. In this study, the applying feasibility of 3D printing technology to produce an injection nozzle for the seawater cooling system was examined. To this end, the extruded plastic specimens were fabricated by 3D printing, and the physical properties of the specimens were estimated through tensile testing. After this, the strain and stress of the nozzle as a function of the pressure were simulated by applying the estimated results to the finite element analysis. The finite element analysis results showed that the nozzle remained within the elastic range at the optimal pressure. The nozzle was estimated to be structurally stable, and the possibility of this study was confirmed.

Constitutive Modeling of Magnesium Alloy Sheets (마그네슘 합금 판재의 비선형 항복.경화거동 모델링)

  • Lee, M.G.;Wagoner, R.H.;Lee, J.K.;Chung, K.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.298-301
    • /
    • 2007
  • Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of HCP metals or by deformation twinning. In the present study, the continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were derived for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys.

  • PDF

DELAYED HYDRIDE CRACKING IN ZIRCALOY FUEL CLADDING - AN IAEA COORDINATED RESEARCH PROGRAMME

  • Coleman, C.;Grigoriev, V.;Inozemtsev, V.;Markelov, V.;Roth, M.;Makarevicius, V.;Kim, Y.S.;Ali, Kanwar Liagat;Chakravartty, J.K.;Mizrahi, R.;Lalgudi, R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.171-178
    • /
    • 2009
  • The rate of delayed hydride cracking (DHC), V, has been measured in cold-worked and stress-relieved Zircaloy-4 fuel cladding using the Pin-Loading Tension technique. At $250^{\circ}C$ the mean value of V from 69 specimens was $3.3({\pm}0.8)x10^{-8}$ m/s while the temperature dependence up to $275^{\circ}C$ was described by Aexp(-Q/RT), where Q is 48.3 kJ/mol. No cracking or cracking at very low rates was observed at higher temperatures. The fracture surface consisted of flat fracture with no striations. The results are compared with previous results on fuel cladding and pressure tubes.

Effect of fabrication processes on mechanical properties of glass fiber reinforced polymer composites for 49 meter (160 foot) recreational yachts

  • Kim, Dave Dae-Wook;Hennigan, Daniel John;Beavers, Kevin Daniel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Polymer composite materials offer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic (GFRP) composites is presented. Fabrication techniques investigated during this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented dining composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results.

A Study on the Change of Physical Properties of Lining Fabric by Washing (세탁에 의한 안감의 물성변화에 관한 연구)

  • Song, Kyoung-Hun;Jung, Young-Hee;Kim, Hyun-Mi
    • Korean Journal of Human Ecology
    • /
    • v.7 no.1
    • /
    • pp.175-182
    • /
    • 1998
  • This study was to investigated physical properties of lining fabric (Nylon, Acetate, Rayon and Polyester) such as shrinkage, tensile strength, moisture regain and crease resistance. The results were as follows. 1. The number of repeated washing times and the concentration of the detergent almost didn't affect on the change of tensile strength. 2. As washing increase more, the shrinkage of all sample was more increased. In the case of Rayon, it was showed that shrinkage was high by $1{\sim}3$ times washing. In the case of Nylon, it was showed minus shrinkage according to frequency of washing. 3. The moisture regain was very decreased by 1 times washing. But the moisture regain was increased with increase in frequency of washing and resulted in it was showed a similar value with controls. 4. As the frequency of washing and the concentration of detergent increase more, the crease resistance was decreased considerably because the elasticity of fiber decreased by mechanical force such as tension, bending and pressure and alkali.

  • PDF

Effects of Magnetic Fields on the Gaseous Structures in Spiral Galaxies

  • Kim, Yonghwi;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.4-49
    • /
    • 2015
  • Stellar spiral arms and magnetic fields in disk galaxies are important in the formation of gaseous structures such as spurs/feathers and wiggles as well as in angular momentum transport between stars and gas. We present our recent results of global magnetohydrodynamic simulations to study nonlinear responses of self-gravitating and magnetized gas to an imposed stellar spiral potential. We vary the arm strength, the arm pattern speed, and magnetic field strength to explore various galactic situations. Magnetic fields not only reduce the peak density of galactic spiral shocks but also make angular momentum transport more efficient via magnetic pressure and tension forces. The extent and shapes of gaseous arms as well as the radial mass drift rate depend rather sensitively on the magnetic field strength. The wiggle instability apparent in unmagnetized models is suppressed with increasing magnetic field strength, while magnetic fields promote the development of magneto-Jeans instability of the arms and magnetic islands in between arms. We quantify the angular momentum transport by spiral shocks, focusing on the effects of magnetic fields. We also present physical interpretations of our numerical results and discuss astronomical implications of our findings.

  • PDF

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

Study on the Treatment Mechanism of Back-Shu Points for Organ Dysfunction (배수혈의 내장기 치료 기전에 관한 연구)

  • Hwang, Man-Suk
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • Objectives : This study aims to overview the therapeutic mechanism of back-shu points in terms of sympathetic visceral motor nervous system. Methods : Studies about autonomic nervous system, and studies and ancient texts about back-shu points were reviewed. We interpreted possible mechanism of back-shu points considering similarities of anatomical and physiological characteristics of back-shu points and visceral motor nervous system. Results : Afferent signals for organ lesions that can develop the symptoms of autonomic neurological symptoms, pain, hyperalgesia through the skin segment. Through a physical examination of the myotome and dermatome, it is possible to diagnose segmental disorders. Treatment stimulation of the thick fibers of the disorder segment skin can reduce abnormal autonomic influence over the sympathetic reflex mechanism. In addition, if spinal muscles are relaxed, the pressure on the nerve roots could be reduced and consequently the hyperactivity of the sympathetic visceral motor signal would be suppressed. Conclusions : The back-shu points treatments work through the mechanism of the sympathetic nervous reflex. Moreover, segmental acupuncture can reduce tension of the spinal muscles, thereby improving pathological conditions of the sympathetic nervous system.

1Analysis of Outsole in Golf shoes by using Finite Element Method (유한요소법을 이용한 공기 순환 방식의 골프화 설계에 관한 연구)

  • Song, W.J.;Kim, Y.U.;Moon, B.Y.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.224-228
    • /
    • 2001
  • This paper presents the analyzing method of golf shoes and shows design technique including air-cycled pump in the midsole. The golf shoes are analyzed by using the finite element method for the optimization in design by considering the configuration of midsole and outsole, which compose the golf shoes. Also the optimum size of air-cycled pump in the midsole is examined. Standard human pressure values for boundary conditions are adoped for the finite element analysis. The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By using the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for midsole and outsole are obtained, respectively. As a result, it can be concluded that these values in the midsole and the outsole are different depending on the characteristic of elastomer. More precise investigation about the assembly of two parts, which represent midsole and outsole, is under studying.

  • PDF

A Study on Mechanical Behaviors of Granite and Sandstone at Low Temperature (저온하에서의 화강암, 사암의 역학적 거동에 관한 연구)

  • 안경문;박연준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • To stabilize the energy price, the more storage facilities of energy are required and among the storage methods of LPG and LNG, the method of storage at low temperature under normal confining pressure is considered. It is needed to understand the mechanical and thermal characteristics of rock under temperature variation so that the behaviors of rock can be predicted. In this paper, the variation of the rock charateristics of the Hwangdeung granite and the Boryung sandstone is studied at low temperature. The mechanical characteristics of rock under low temperatures are that as temperature decreased, unaxial compression strength and Young's modulus increased for Hwangdeung granite; strength and Young's modulus in wet condition were greater than those in dry condition. In the case of Boryung sandstone, as temperature decreases unaxial compression strength and Young's modulus increase but decrease below -10$0^{\circ}C$ in dry condition and below -16$0^{\circ}C$ in wet condtion. The mechanical characteristics of rock after cooling to previous temperature and thawing are that uniaxial compression strength and Young's modulus decrease as temperature decreases. Uniaxial compression strength and Young's modulus in wet conditon decrease more than those in dry condition. Brazilian tension strength decreases as temperature decreases.

  • PDF