• 제목/요약/키워드: tension field angle

검색결과 27건 처리시간 0.027초

전기습윤 현상에서의 선장력과 전기 이중층의 영향에 대한 해석 (Analysis of Effects of Line Tension and Electrical Double Layers on Electrowetting Phenomenon)

  • 정상국;강관형;이정묵;강인석
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.956-962
    • /
    • 2003
  • The Lippmann-Young equation has been widely used in electrowetting to predict the contact-angle change of a droplet on a insulating substrate with respect to the externally-applied electrical voltage. The Lippmann-Young equation is derived by assuming a droplet as a perfect conductor, so that the effect of the electrical double layer and the line tension are not taken into account. The validity of the assumption has never been checked before, systematically. In the present investigation, a modified Lippmann-Young equation is derived taking into account of the effect of the electrical double layer and the line tension. To assess their influence on contact-angle change in electrowetting, the electrostatic field around the three-phase contact line is analyzed by solving the Poisson-Boltzmann equation numerically. The validity of the numerical methods is verified by using the past theoretical results on the electrostatic field around a wedge-shaped geometry, which shows fairly good agreement. The results of the present investigation clearly indicate that the effect of the electrical double layer and the line tension is negligible for a millimeter-sized droplet. On the other hand, for a micron-sized droplet, the effect of the line tension can become a dominating factor which controls the contact-angle change in electrowetting.

횡보강근이 없는 콘크리트 부재의 전단강도 (Shear Strength of Concrete Members without Transverse Steel)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

내진 강판전단벽시스템의 변형모드에 따른 스트립앵글 변화 (Strip Angle Changes in Accordance with the Deformation Mode of Seismic Steel Plate Shear Wall Systems)

  • 이가민;이예;진유의;오근영;김우석
    • 한국강구조학회 논문집
    • /
    • 제25권5호
    • /
    • pp.497-507
    • /
    • 2013
  • 횡하중을 받는 고층건물에서의 인장역이 형성될 때 강판전단벽의 앵글 변화한다. 본 연구에서는 강판전단벽을 갖는 3층, 9층, 14층 및 20층의 4개 구조물에 대한 유한요소해석 연구를 하였다. 유한요소해석 결과와 각 모델들의 이론식으로 계산된 결과를 비교하여 전단변형 모드와 휨변형 모드로 분류하였다. 전단변형 모드의 모델에서는 주응력 벡터가 일정한 경사각을 이루며 인장역을 발생시킨 반면 휨변형 모델에서는 인장역의 변화는 기존의 이론식과 차이를 보였다.

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F.;Tang, B.Q.;Peng, X.L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.377-390
    • /
    • 2010
  • This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Finite Element Analysis of Electrical Double Layers near Triple Contact Lines

  • Kang Kwan Hyoung;Kang In Seok;Lee Choung Mook
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.491-494
    • /
    • 2002
  • To assess the electrostatic interaction of surfaces at the triple contact line, the electrostatic field is analyzed by using the finite element method. The Helmholtz free energy is used as a functional which should be minimized under an equilibrium condition. The numerical results are compared with the nonlinear analytical solution for a two-dimensional charged interface and linear solution for a wedge shaped geometry, which shows fairly good agreement. The method is applied to the analysis of electrostatic influence on the contact angle on a charged substrate. The excess free energy found to increase drastically as the contact angle approaches to zero. This excess free energy Plays an opposite role to the Primary electrocapillary effect, as the contact angle gets smaller. This enables an alternative explanation for the contact-angle saturation phenomenon occurring in electrical control of surface tension and contact angle.

  • PDF

유공형 부방파제의 장력특성에 관한 실험 (Experiments on Tension Characteristics of Perforated-type Floating Breakwaters)

  • 윤재선;하태민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.514-514
    • /
    • 2017
  • Floating breakwaters were treated as solid bodies without any perforation in previous studies. In this study, however, a floating breakwater is perforated to allow the partial absorption of the energy produced by incident waves and an air chamber is placed in the upper part to control the breakwater draft. A series of laboratory experiments for a floating breakwater installed with a mooring system are carried out. In general, a mooring system can be classified by the number of mooring points, the shape of the mooring lines, and the degree of line tension. In this study, a four-point mooring is employed since it is relatively easier to analyze the measured results. Furthermore, both the tension-leg and the catenary mooring systems have been adopted to compare the performance of the system. In laboratory experiments, the hydraulic characteristics of a floating breakwater were obtained and analyzed in detail. Also, a hydraulic model test was carried out on variable changes by changing the mooring angle and thickness of perforated wall. A hydraulic model was designed to produce wave energy by generating a vortex with the existing reflection method. Analysis on wave changes was conducted and the flow field around the floating breakwater and draft area, which have elastic behavior, was collected using the PIV system. From the test results the strong vortex was identified in the draft area of the perforated both-sides-type floating breakwater. Also, the wave control performance of the floating breakwater was improved due to the vortex produced as the tension in the mooring line decreased.

  • PDF

원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동 (Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects)

  • 송삼홍;신승만;이정무;서기정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

굽힘 하중이 작용하는 비대칭노치시편의 완전소성해석 (Fully Plastic Analyses of Unequally Notched Specimens in Bending Moment)

  • 오창균;박진무;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.269-278
    • /
    • 2006
  • This paper proposes slip line fields for bending of unequally notched specimens in plane strain that have a sharp crack in one side and a sharp V-notch in the other side. Depending on the back angle, two slip line fields are proposed, from which the limit moment and crack tip stress fields are obtained as a function of the back angle. Excellent agreement between slip line field solutions with those from detailed finite element limit analysis based on non-hardening plasticity provides confidence in the proposed slip line fields. One interesting point is that, for the unequally notched specimen, the difference between the crack tip triaxial stress for tension and that for bending increases significantly with increasing the back angle. This suggests that such a specimen could be potentially useful to investigate the crack tip constraint effect on fracture toughness of materials. In this respect, the possibility of designing a new toughness testing specimen with varying crack tip constraint is discussed.