• Title/Summary/Keyword: tension field

Search Result 451, Processing Time 0.033 seconds

REMARKS ON LEVI HARMONICITY OF CONTACT SEMI-RIEMANNIAN MANIFOLDS

  • Perrone, Domenico
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.881-895
    • /
    • 2014
  • In a recent paper [10] we introduced the notion of Levi harmonic map f from an almost contact semi-Riemannian manifold (M, ${\varphi}$, ${\xi}$, ${\eta}$, g) into a semi-Riemannian manifold $M^{\prime}$. In particular, we compute the tension field ${\tau}_H(f)$ for a CR map f between two almost contact semi-Riemannian manifolds satisfying the so-called ${\varphi}$-condition, where $H=Ker({\eta})$ is the Levi distribution. In the present paper we show that the condition (A) of Rawnsley [17] is related to the ${\varphi}$-condition. Then, we compute the tension field ${\tau}_H(f)$ for a CR map between two arbitrary almost contact semi-Riemannian manifolds, and we study the concept of Levi pluriharmonicity. Moreover, we study the harmonicity on quasicosymplectic manifolds.

A Study on the Development of a Continuously Variable Transmission for Bicycles by Theory of Inventive Problem Solving (TRIZ) (창의적 문제 해결이론(트리즈)을 이용한 자전거용 무단 변속장치의 개발)

  • Lee, Kun-Sang;Choi, Jun-Ho;Yoo, Byung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.75-82
    • /
    • 2007
  • This paper represents a study on the development of the conceptual design for the bicycle transmission by TRIZ. At first the problem of the transmission of commercial bicycles was analyzed. The problem was defined as "the variable sprocket pitch diameter with respect to the tension change of chain". The conceptual solutions were derived by Su-Field Model Analysis, IFR(Ideal Final Result), SLP(Smart Little People), and Contradiction Matrix. The here developed sprocket prototype shows the automatic change of sprocket pitch diameter with the tension change of chain.

Lifetime estimation of a covered overhead line conductor

  • Leskinen, Tapio;Kantola, Kari
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.307-324
    • /
    • 2003
  • The paper presents results of studies concerning wind-induced aeolian vibration and fatigue of a 110 kV covered conductor overhead line. Self-damping measurement techniques are discussed: power method is found to be the most reliable technique. A method for compensating tension variations during the self-damping test is presented. Generally used empirical self-damping power models are enhanced and the different models are compared with each other. The Energy Balance Analysis (EBR) is used to calculate the aeolian vibration amplitudes, which thereafter are converted to bending stress for the calculation of conductor lifetime estimate. The results of EBA are compared with field measurements, Results indicate that adequate lifetime estimates are produced by EBA as well as field measurements. Generally the EBA gives more conservative lifetime expectancy. This is believed to result from the additional damping existing in true suspension structures not taken into account by EBA. Finally, the correctness of the line design is verified using Cigre's safe design tension approach.

Behaviour of edge crack propagation under non-symmetric contact tractions (비대칭 접촉하중에 의한 표면균열 전파거동)

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.144-150
    • /
    • 2001
  • Considered is non-symmetric contact traction induced by the tilting of a contact body and/or by a far field bulk tensile load to the other body. The problem is under the regime of plane strain. General profile of the contact end is incorporated and partial slip condition is supposed. As an example contact configuration, an indentation of a punch with rounded corners onto a half plane is studied. The variation of the internal stress field due to the tilting and the bulk tension is investigated. An edge crack problem is analyzed to examine the influence of the non-symmetric traction. It is shown that the tilting of a punch does not influence the behaviour of the crack. Rather, the effect of the bulk tension on the cracking behaviour is found considerable.

  • PDF

A Study on Design for High-torque MR(Magnetorheological) Brake (MR 브레이크 고출력화 설계에 관한 연구)

  • Park, J.H.;Seo, M.Y.;Lee, H.S.;Ham, Y.B.;Yun, S.N.;Seo, E.S.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.105-108
    • /
    • 2010
  • In this study, a MR(Magneto-rheological) brake to obtain high torque-to-size ratio instead of conventional powder brake is presented for high-tension control of converting machinery such as coater, slitter and so on. First, to obtain the higher performance than conventional powder brake, a MR brake with a modified rotor shape is newly designed and analyzed by using electromagnetic field analysis. Second, a prototype of the MR brake is fabricated with the optimized structural parameters and an experimental apparatus is constructed. Finally, basic characteristics between current and torque are experimentally investigated.

  • PDF

A Case Study on Axial Forces of Cable-band Bolts in Domestic Suspension Bridge (국내 현수교량의 케이블 밴드볼트 축력관리 및 검토사례)

  • Park, Si-Hyun;Jung, Woo-Young;Kim, Hyun-Woo;You, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Suspension bridge cables made of high strength steel wires require periodical maintenance in accordance with the axial force of cable-band bolts, since the bolts in suspension bridges can undergo tension decrease due to creep of cable wires, bolt relaxation, load fluctuation, and cable re-arrangement, etc. Consequently, this study is aimed at investigating and subsequently evaluating the critical factors with respect to the bolt tension-decrease phenomenon in SR suspension bridge in Korea, based on field monitoring, theoretical studies, and field record management works. From the observation, it is interesting to note that the decrease in the bolt tension force is typically accompanied by plastic deformation of the zinc plating layers in the cable wires. In addition, a framework corresponding to generic methodologies to characterize the deformation in terms of the bolt tension-decrease and long-term history management has been developed in this exploratory study.

Study on LSDC Design for Coiling Shape Control of Hot Strip Mills (열간압연 권취형상 제어를 위한 LSDC 설계에 관한 연구)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.869-874
    • /
    • 2015
  • We developed an LSDC (Load Shift and Load Distribution Control) technology in order to improve coil quality and productivity by reducing tension fluctuation especially for the tail of the strip in the down coiler in hot strip mills. To adapt the new controller, the torque and speed distribution between the zero pinch roll, pinch roll, and mandrel are needed. The proposed controller is a combination of an LSC to share the tension between the mill stand and the mandrel, and an LDC to shift the torque load from the zero pinch roll to the pinch roll. From the simulation, the proposed controller is verified under the torque disturbance. Using a field test, the torque deviation decreased by nearly 50% through utilization of the LSDC control.

Estimation of a tensile force in a cable using dynamic characteristics (진동특성을 이용한 케이블의 인장력 산정)

  • Choi, Sang-Hyun;Nam, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.461-467
    • /
    • 2007
  • Exact application of the tensile force is critical to high-tension members in civil engineering structures, and thus actual tensile forces have often been estimated in field. To date, a few methodologies have been presented utilizing static and/or dynamic responses of tension members. Each of these methods has its disadvantages as well as advantages in its procedures, accuracy, and equipment requirements. In this paper, the feasibility of a sensitivity based methodology, based on the relationship between the natural frequencies and the applied tensile force, developed by the authors, is verified using the measured data from a cable-stayed bridge structure. From the results, it is shown that the proposed method can be utilized in estimating the tensile force in tension member of a real structure.

  • PDF

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.