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REMARKS ON LEVI HARMONICITY OF CONTACT

SEMI-RIEMANNIAN MANIFOLDS

Domenico Perrone

Abstract. In a recent paper [10] we introduced the notion of Levi har-
monic map f from an almost contact semi-Riemannian manifold (M,ϕ, ξ,
η, g) into a semi-Riemannian manifold M ′. In particular, we computed
the tension field τH(f) for a CR map f between two almost contact
semi-Riemannian manifolds satisfying the so-called ϕ-condition, where
H = Ker(η) is the Levi distribution. In the present paper we show that
the condition (A) of Rawnsley [17] is related to the ϕ-condition. Then,
we compute the tension field τH(f) for a CR map between two arbitrary
almost contact semi-Riemannian manifolds, and we study the concept
of Levi pluriharmonicity. Moreover, we study the harmonicity on quasi-
cosymplectic manifolds.

1. Introduction

As a natural continuation of the ideas in [2], and following the ideas of B. Fu-
glede (who started the study of the semi-Riemannian case within harmonic map
theory, cf. [11] and [1], pp. 427–455), in the recent paper [10] S. Dragomir and
the present author introduced the concept of Levi harmonic map f from an al-
most contact semi-Riemannian manifold (M,ϕ, ξ, η, g) into a semi-Riemannian
manifold (M ′, g′), i.e., C∞ solutions of τH(f) ≡ traceg

(

ΠHβf

)

= 0, where βf

is the second fundamental form of f , and ΠHβf is the restriction of βf to the
Levi distribution H = Ker(η). Thus, we studied the Levi harmonicity for CR
maps between two almost contact semi-Riemannian manifolds. This is perhaps
the most general geometric setting (metrics are but semi-Riemannian and in
general the contact condition (2.2) is not satisfied and the underlying almost
CR structures are not integrable).

In the study of [10] an important role is played by the notion of ϕ-condition
(cf. (3.1) in §3), in particular we computed the tension field τH(f) for a CRmap
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f between two almost contact semi-Riemannian manifolds satisfying the the
ϕ-condition. Moreover, we emphasized that the class of almost contact semi-
Riemannian manifolds obeying to (3.1) is quite large. For instance, contact
semi-Riemannian manifolds, quasi-cosimplectic manifolds and orientable real
hypersurfaces in an indefinite Kaehler manifold (with the induced almost con-
tact semi-Riemannian structure) satisfy the ϕ-condition. On the other hand,
Rawnsley [17] introduced the so-called condition (A) in order to study the har-
monicity of f -holomorphic maps between an almost Hermitian manifold with
coclosed Kaehler form and a Riemannian manifold equipped with a f -structure
which satisfies condition (A).

In the present paper we show that the condition (A) of Rawnsley is re-
lated to the ϕ-condition, more precisely (cf. Theorem 3.2): if an almost con-
tact semi-Riemannian structure satisfies the condition (A), then it satisfies
the ϕ-condition. The converse does not hold. In Section 4, we compute the
tension field τH(f) for a CR map f : M → M ′ between two arbitrary al-
most contact semi-Riemannian manifolds (this result extends Theorem 3.9 of
[10]). In Section 5, in analogy with the Kaehlerian case [12], we introduce and
study the concept of Levi pluriharmonicity (cf. (5.1)). Of course Levi plurihar-
monicity implies Levi harmonicity. In particular we get that if M is an invari-
ant semi-Riemannian submanifold of a contact semi-Riemannian manifold M ,
then the inclusion i : M → M is Levi pluriharmonic and a pseudohermitian
map. In the last section, we show that any CR map f : M → M ′ among
two quasi-cosymplectic manifolds is Levi pluriharmonic. Moreover, a CR map
f : M → M ′ among two quasi-cosymplectic manifolds is a harmonic map if
and only if f∗ ξ is a geodesic vector field.

2. Preliminaries

2.1. Contact semi-Riemannian manifolds

Let M be a real (2n + 1)-dimensional C∞ manifold. An almost contact

structure (ϕ, ξ, η) on M consists of a (1, 1)-tensor field ϕ, a tangent vector field
ξ ∈ X(M) (the characteristic, or Reeb, vector field) and a differential 1-form η
such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

In particular ϕ(ξ) = 0 and η ◦ ϕ = 0. Let ε ∈ {±1}. Given an almost contact
structure (ϕ, ξ, η) on M a compatible metric is a semi-Riemannian metric g on
M such that

(2.1) g(ϕX,ϕY ) = g(X,Y )− ε η(X)η(Y ), X, Y ∈ X(M).

Then η(X) = ε g(ξ,X) and g(ξ, ξ) = ε. Therefore the characteristic vector
field ξ is either spacelike or timelike (ξ is never lightlike). The synthetic object
(ϕ, ξ, η, g) is an almost contact semi-Riemannian structure. If in addition the
contact condition

(2.2) dη = g(·, ϕ·)
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is satisfied, then η is a contact form, i.e., η∧ (dη)n is a volume form on M (and
(ϕ, ξ, η, g) is referred to as contact semi-Riemannian structure on M). On each
contact semi-Riemannian manifold the tensor field h = (1/2)Lξϕ (where L is
the Lie derivative) is symmetric and satisfies

(2.3) ∇ξ = −ε ϕ− ϕ ◦ h, ∇ξϕ = 0, h ◦ ϕ+ ϕ ◦ h = 0, h(ξ) = 0.

Here ∇ is the Levi-Civita connection of the semi-Riemannian manifold (M, g).
Moreover (by Lemma 4.3 in [6])

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 2g(X,Y )ξ − η(Y )
{

εX + ε η(X)ξ + h(X)
}

.(2.4)

We may refer to [6], [15], [16] for more information about the geometry of a
contact semi-Riemannian manifold.

2.2. Almost CR structures

Let M be a real (2n + 1)-dimensional manifold. An almost CR structure

on M is a complex subbbundle T1,0(M), of complex rank n, of the complex-
ified tangent bundle T (M) ⊗ C such that T1,0(M) ∩ T0,1(M) = (0), where

T0,1(M) = T1,0(M) (overbars denote complex conjugates). The integer n is
the CR dimension. An almost CR structure T1,0(M) is integrable, and then
T1,0(M) is referred to as a CR structure, if Z,W ∈ C∞(U, T1,0(M)) yields
[Z,W ] ∈ C∞(U, T1,0(M)) for any open set U ⊂ M . The Levi (or maxi-

mally complex) distribution is the real rank 2n distribution on M given by
H ≡ H(M) = Re{T1,0(M)⊕ T0,1(M)}. It carries the complex structure

J : H → H, J(Z + Z) = i(Z − Z), Z ∈ T1,0(M) (i =
√
−1).

Then T1,0(M) = {X − iJX : X ∈ H}, i.e., T1,0(M) is the eigenbundle of J (the
C-linear extension of J to H⊗ C) corresponding to the eigenvalue i. The pair
(H, J) (the real manifestation of T1,0(M)) is often referred to as an almost CR
structure on M , as well. A pseudohermitian structure is a differential 1-form
θ ∈ Ω1(M) such that Ker(θ) = H. Given a pseudohermitian structure θ on M
the Levi form Gθ is given by

Gθ(X,Y ) = (dθ)(X, JY ), X, Y ∈ H.

An almost CR structure (H, J) is nondegenerate if the Levi form Gθ is nonde-
generate for some θ. If this is the case θ is a contact form (i.e., θ ∧ (dθ)n is
a volume form). An almost CR structure (H, J) is strictly pseudoconvex if Gθ

is positive definite for some θ. Let (M,H, J) be a nondegenerate almost CR
manifold and θ a fixed contact form on M . Let us extend J to an endomor-
phism ϕ of the tangent bundle by requesting that ϕ = J on H and ϕ(T ) = 0.
Here T ∈ X(M) is unique nowhere zero tangent vector field on M determined
by θ(T ) = 1 and (dθ)(T, ·) = 0. Then ϕ2 = −I + θ ⊗ T . The Webster metric

is the semi-Riemannian metric gθ given by

gθ(X,Y ) = (dθ)(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1
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for any X,Y ∈ H. Then (ϕ, ξ = −T, η = −θ, g = gθ) is a contact semi-
Riemannian structure on M . If Gθ is positive definite the Webster metric
gθ is a Riemannian metric (and (ϕ, ξ, η, g) is a contact metric structure on
M). Conversely any almost contact manifold (M,ϕ, ξ, η) carries the almost
CR structure given by H = Ker(η) and J = ϕ|H.

2.3. Levi harmonic maps

Let (M,ϕ, ξ, η, g) be a real (2n+1)-dimensional almost contact semi-Rieman-
nian manifold and (M ′, g′) a semi-Riemannian manifold. Let f : M → M ′ be a

C∞ map and f−1T (M ′) → M the pullback of T (M ′) by f . Let ∇′f = f−1∇′

be the pullback of the Levi-Civita connection ∇′ of (M ′, g′), i.e., the connection
in the vector bundle f−1T (M ′) → M induced by ∇′. If (U, xi) and (V, yα) are

local coordinate systems on M and N such that f(U) ⊂ V , then ∇′f is locally
described by

∇′f
∂/∂xj (∂/∂yβ)f =

∂fα

∂xj

(

Γ′γ
αβ ◦ f

)

(∂/∂yγ)f ,

where Y f = Y ◦ f ∈ C∞(f−1(V ), f−1T (M ′)) denotes the natural lift of
Y ∈ X(V ) and Γ′γ

αβ are the Christoffel symbols of (M ′, g′). Let H = Ker(η)

and J = ϕ|H be the almost CR structure underlying (ϕ, ξ, η, g). The second
fundamental form βf of f is given by

(2.5) βf (X,Y ) = ∇′f
Xf∗Y − f∗∇XY, X, Y ∈ X(M).

Here ∇ is the Levi-Civita connection of (M, g). Also f∗X ∈ C∞(f−1T (M ′)) is
given by (f∗X)(x) = (dxf)Xx ∈ Tf(x)(M

′) for any x ∈ M and any X ∈ X(M).

Next let τH(f) ∈ C∞(f−1T (M ′)) be given by

τH(f) = traceg (ΠHβf ) ,(2.6)

where ΠHβf is the restriction of βf to H⊗H.

Definition 2.1. A C∞ map f : M → M ′ is Levi harmonic with respect to
H = Ker(η) if τH(f) = 0.

Next, we recall the following:

Definition 2.2. A C∞ map f : M → M ′ of almost CR manifolds is a CR

map if

(2.7) (dxf)Hx ⊂ H(M ′)f(x) , (dxf) ◦ Jx = J ′
f(x) ◦ (dxf)

for any x ∈ M .

Typical examples of CR maps are got as traces of holomorphic maps of
Kaehlerian manifolds on real hypersurfaces. Precisely let M be a Kaehlerian
manifold. Any orientable real hypersurface M ⊂ M admits a natural almost

contact metric structure (cf. e.g. [5]). If M ′ ⊂ M
′
is another oriented real

hypersurface in the Kaehlerian manifold M
′
and F : M → M

′
is a holomor-

phic map such that F (M) ⊂ M ′, then f ≡ F |M : M → M ′ is a CR map. It
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should be emphasized that, in spite of our metric approach [where the wealth of
additional first order geometric structure (ϕ, ξ, η, g) is meant to “compensate”
for the lack of integrability of T1,0(M)] the property (2.7) is tied to the almost
CR structures alone. In particular the statements above hold true for traces of
holomorphic maps among indefinite Kaehlerian manifolds (cf. E. Barros and
A. Romero, [3], for definitions and examples). Indeed let M be an indefinite
Kaehlerian manifold and M ⊂ M an orientable real hypersurface. The indefi-
nite Kaehler structure of M induces on M an almost contact semi-Riemannian
structure (cf. A. Bejancu and K. L. Duggal, [4]).

Let θ and θ′ be pseudohermitian structures on the almost CR manifolds M
and M ′, respectively. If f : M → M ′ is a CR map, then

f∗θ′ = µ θ

for some µ ∈ C∞(M).

Definition 2.3. A CR map f is pseudohermitian if µ = c for some c ∈ R. Also
f is isopseudohermitian if c = 1.

3. The ϕ-condition and the condition (A)

In [10] we adopted the following:

Definition 3.1. We say that an almost contact semi-Riemannian manifold
(M,ϕ, ξ, η, g) satisfies the ϕ-condition if

∇ϕXϕX +∇XX = ϕ[ϕX,X ](3.1)

for any X ∈ H.

Now, we consider the following tensor

P(X,Y ) = (∇Xϕ)ϕY − (∇ϕXϕ)Y

for any X,Y ∈ H =ker(η). P is a tensor of type (1, 2) which is ϕ-invariant,
i.e., P(ϕX,ϕY ) = P(X,Y ), moreover we note that M satisfies the ϕ-condition
if and only if the tensor P is skew-symmetric, that is P(X,X) = 0. Next, we
put

H+ = T1,0(M) = {X − iϕX, X ∈ H}
and

H− = T0,1(M) = {X + iϕX, X ∈ H}.
Then the complexified tangent bundle of M splits into the direct sum of the
tangent bundles H+, H− and Cξ. Besides H+ (resp. H−) is the eigenbundle
of ϕ (the C-linear extension to H⊗C) corresponding to the eigenvalue i (resp.
−i).

We note that the tensor field ϕ of an almost contact semi-Riemannian man-
ifold defines a f -structure, that is,

ϕ3 + ϕ = 0.
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Then, following Rawnsley [17] (cf. p. 91), we say that the almost contact semi-
Riemannian structure defines the so-called condition (A), if

∇V W ∈ H+ for any V ∈ H− and W ∈ H+ .

Rawnsley introduced a such condition in order to study the harmonicity of
f -holomorphic maps between an almost Hermitian manifold with coclosed
Kaehler form and a Riemannian manifold equipped with a f -structure which
satisfies condition (A).

Since
(

∇V ϕ
)

W = ∇V ϕW −ϕ∇V W , condition (A) is equivalent to (cf. also
[1] Proposition 2.6)

(

∇V ϕ
)

W = 0 for any V ∈ H− and W ∈ H+ .(3.2)

An almost Hermitian structure satisfying the condition (A) is said to be a
(1, 2)-symplectic structure (see also [1] p. 251).

We remark that the condition (A), that is (3.2), is satisfied if and only if

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 0 , equivalently P(X,Y ) = 0(3.3)

for any X,Y ∈ H. Moreover, the condition (3.3) implies the ϕ-condition, that
is P(X,X) = 0. More precisely, one gets

P(X,Y ) = 0 ⇐⇒ P(X,X) = 0 and P(X,ϕX) = 0.

Therefore, the condition (A) implies the ϕ-condition. On the other hand, the
converse does not hold. In fact, the condition P(X,ϕX) = 0 means that

[X,ϕX ] = ϕ
(

∇ϕXϕX +∇XX
)

∈ H

for any X ∈ H. But, if M is a contact semi-Riemannian manifold

ε g([X,ϕX ], ξ) = η([X,ϕX ]) = −2(dη)(X, ϕX)

= −2g(X,ϕ2X) = 2g(X,X) 6= 0

for X ∈ H, X 6= 0, X spacelike or timelike.
So contact semi-Riemannian structures do not satisfy the condition (A).

However contact semi-Riemannian structures satisfy the ϕ-condition. In fact,
by (2.4), for any X,Y ∈ H

∇XϕY − ϕ∇XY −∇ϕXY − ϕ∇ϕXϕY = 2g(X,Y )ξ.

In particular for Y = ϕX one derives (3.1). Hence any contact semi-Riemannian
manifold satisfies the ϕ-condition. Therefore, we get the following:

Theorem 3.2. Let (M,ϕ, ξ, η, g) be an almost contact semi-Riemannian man-

ifold. If the almost contact semi-Riemannian structure satisfies the condition

(A), then it satisfies the ϕ-condition. The converse does not hold.

So, our ϕ-condition extends the condition (A) of Rawnsley [17].
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Remark 3.3. As emphasized in [10] the class of almost contact semi-Riemannian
manifolds obeying to (3.1) is quite large. For instance, contact semi-Riemannian
manifolds, orientable real hypersurfaces in an indefinite Kaehler manifold (with
the induced almost contact semi-Riemannian structure) and quasi-cosimplectic
manifolds (cf. Section 6) satisfy the ϕ-condition.

4. Harmonicity between almost contact semi-Riemannian
manifolds

In this section we establish the following theorem which extends Theorem
3.9 of [10].

Theorem 4.1. Let (M,ϕ, ξ, η, g) and (M ′, ϕ′, ξ′, η′, g′) be two almost contact

semi-Riemannian manifolds with dim(M) = 2n + 1. Then, for each CR map

f : M → M ′

τH(f) = − trace(ϕ∇ξ)ϕ′f f∗ ξ + ϕ′f
(

trace|Hf∗∇′ϕ′
)

(4.1)

−
(

trace|Hf∗∇′η′
)

ξ′ + f∗
(

ϕ∇∗ϕ+ (divξ)ξ + ε∇ξξ
)

,

where ε = g(ξ, ξ), ϕ′f : f−1T (M ′) → f−1T (M ′) is the pullback of ϕ′ by f , and
∇∗ is the operator formal adjoint of ∇.

Proof. The tangent bundle to any (2n + 1)-dimensional almost contact semi-
Riemannian manifold M admits a local semi-orthonormal frame (a ϕ-basis),
i.e., a frame of the form {ξ, Eα , ϕEα : 1 ≤ α ≤ n}. By (2.1) if Eα is a
spacelike (respectively timelike), then ϕEα is spacelike (respectively timelike).
In particular a semi-Riemannian metric compatible with an almost contact
structure has either signature (2p+ 1, 2n− 2p) or signature (2p, 2n− 2p+ 1),
according to whether ξ is spacelike or timelike.

Let {ξ, Eα , ϕEα : 1 ≤ α ≤ n} be a ϕ-basis and let us set εα = g(Eα , Eα) ∈
{±1}. Then one has

τH(f)=

n
∑

α=1

εα {∇′f
Eα

f∗Eα−f∗∇Eα
Eα+∇′f

ϕEα
f∗ϕEα−f∗∇ϕEα

ϕEα}.(4.2)

We consider the operator ∇∗, the formal adjoint of ∇ (see for example [9],
pp. 108–110), thus if S is a tensor of type (1, 1), ∇∗S = −trace∇S. Then,

−∇∗ϕ =

n
∑

α=1

εα {(∇Eα
ϕ)Eα + (∇ϕEα

ϕ)ϕEα)} + ε(∇ξϕ)ξ

=

n
∑

α=1

εα {[Eα, ϕEα]− ϕ(∇Eα
Eα +∇ϕEα

ϕEα)} − εϕ∇ξξ,

and hence

−ϕ∇∗ϕ =

n
∑

α=1

εα {ϕ[Eα, ϕEα]− ϕ2(∇Eα
Eα +∇ϕEα

ϕEα)}+ ε∇ξξ
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=

n
∑

α=1

εα {(∇Eα
Eα +∇ϕEα

ϕEα)− ϕ[ϕEα, Eα]}+ (divξ)ξ + ε∇ξξ,

that is,
n
∑

α=1

εα (∇Eα
Eα +∇ϕEα

ϕEα)(4.3)

=
n
∑

α=1

εα ϕ[ϕEα, Eα]− ϕ∇∗ϕ− (divξ)ξ − ε∇ξξ.

Moreover,

ϕ′f
(

trace|Hf∗∇′ϕ′
)

= ϕ′f
n
∑

α=1

εα {(∇′
f∗Eα

ϕ′)f∗Eα + (∇′
f∗ϕEα

ϕ′)f∗ϕEα}

=

n
∑

α=1

εα {ϕ′f [f∗Eα, ϕ
′ff∗Eα]− (ϕ′f )2(∇′

f∗Eα
f∗Eα +∇′

f∗ϕEα
f∗ϕEα)}

=

n
∑

α=1

εα {ϕ′f [f∗Eα, ϕ
′ff∗Eα] +∇′

f∗Eα
f∗Eα

+∇′
f∗ϕEα

f∗ϕEα − η′(∇′
f∗Eα

f∗Eα +∇′
f∗ϕEα

f∗ϕEα)ξ
′} ,

and (as f is a CR map)

(

trace|Hf∗∇′η′
)

=
n
∑

α=1

εα {(∇′
f∗Eα

η′)f∗Eα + (∇′
f∗ϕEα

η′)f∗ϕEα)}

= −
n
∑

α=1

εα η′(∇′
f∗Eα

f∗Eα +∇′
f∗ϕEα

f∗ϕEα)

give
n
∑

α=1

εα{(∇′
f∗Eα

f∗Eα +∇′
f∗ϕEα

f∗ϕEα)(4.4)

= ϕ′f
(

trace|Hf∗∇′ϕ′
)

−
(

trace|Hf∗∇′η′
)

ξ′ +

n
∑

α=1

εα {ϕ′f [f∗ϕEα, f∗Eα]}.

Then, (4.2), (4.3) and (4.4) imply

τH(f)=
n
∑

α=1

εα {(ϕ′ff∗−f∗ϕ)[ϕEα, Eα]}+f∗
(

ϕ∇∗ϕ+(divξ)ξ+ε∇ξξ
)

(4.5)

+ ϕ′f
(

trace|Hf∗∇′ϕ′
)

−
(

trace|Hf∗∇′η′
)

ξ′ .

Note that ϕ′ff∗ − f∗ϕ = 0 on H,

[ϕEα , Eα] = −ϕ2[ϕEα , Eα] + g([ϕEα, Eα] , ξ)ξ
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and

n
∑

α=1

εα g([ϕEα , Eα] , ξ) =

n
∑

α=1

εα {g(∇ϕEα
Eα , ξ)− g(∇Eα

ϕEα , ξ)}

=

n
∑

α=1

εα {−g(∇ϕEα
ξ , Eα) + g(∇Eα

ξ , ϕEα)}

= −
n
∑

α=1

εα {g(ϕ∇ϕEα
ξ , ϕEα) + g(ϕ∇Eα

ξ , Eα)}

= −trace(ϕ∇ξ) + ε g(ϕ∇ξξ , ξ) = −trace(ϕ∇ξ).

So, from (4.5) we get (4.1). �

Next, if M and M ′ satisfy the ϕ-condition, from (4.3) and (4.4) we have

ϕ∇∗ϕ+ (divξ)ξ + ε∇ξξ = 0

and

ϕ′f
(

trace|Hf∗∇′ϕ′
)

−
(

trace|Hf∗∇′η′
)

ξ′ = 0 .

Therefore we obtain:

Corollary 4.2 ([10]). Let (M,ϕ, ξ, η, g) and (M ′, ϕ′, ξ′, η′, g′) be two almost

contact semi-Riemannian manifolds with dim(M) = 2n + 1, satisfying the ϕ-
condition. Then, for any CR map f : M → M ′

τH(f) = −trace(ϕ∇ξ)ϕ′ff∗ ξ .(4.6)

If additionally (M,ϕ, ξ, η, g) is a contact semi-Riemannian manifold, then

τH(f) = −2n εϕ′ff∗ ξ,(4.7)

where ε = g(ξ, ξ). Hence f is Levi harmonic if and only if f∗ ξ is collinear to

ξ′.

Moreover, since

τ(f) = τH(f) + ε
(

∇′
f∗ξf∗ξ − f∗∇ξξ

)

,

from Theorem 4.1, we get:

Theorem 4.3. Let (M,ϕ, ξ, η, g) and (M ′, ϕ′, ξ′, η′, g′) be two almost contact

semi Riemannian manifolds satisfying the ϕ-condition, with ξ geodesic and

trace(ϕ∇ξ) = 0. Then, a CR map f : M → M ′ is a harmonic map if and only

if f∗ ξ is a geodesic vector field.

An application of this theorem is given in Section 6.
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5. Levi pluriharmonicity

Let (M, g, J) be a Kaehler manifold and (M ′, g′) a Riemannian manifold.
Following [12] a C∞ map f : M → M ′ is said to be pluriharmonic if the second
fundamental form βf satisfies

βf (JX, JY ) + βf (X,Y ) = 0, ∀X,Y ∈ X(M).

Then, we introduce the following:

Definition 5.1. Let (M,ϕ, ξ, η, g) be an almost contact semi-Riemannian man-
ifold and (M,′ , g′) a semi-Riemannian manifold. A C∞ map f : M → M ′ is
said to be Levi pluriharmonic if the second fundamental form βf satisfies

(5.1) βf (ϕX,ϕY ) + βf (X,Y ) = 0, ∀X,Y ∈ H,

equivalently
βf (ϕX,ϕX) + βf (X,X) = 0, ∀X ∈ H.

Of course Levi pluriharmonicity implies Levi harmonicity. Now, we show the
following.

Theorem 5.2. Let (M,ϕ, ξ, η, g) be a contact semi-Riemannian manifold and

(M ′, ϕ′, ξ′, η′, g′) an almost contact semi-Riemannian manifold satisfying the

ϕ-condition with ξ′ geodesic vector field. If f : M → M ′ is a CR map, then f
is Levi pluriharmonic if and only if f is a pseudohermitian map.

Proof. Necessity. We suppose that f is a pseudohermitian map. Thus f is a
CR map and f∗ξ = cξ′ with c ∈ R. This implies that

f∗ϕX = ϕ′ff∗X, ∀X ∈ X(M).(5.2)

Then, as f is a CR map one has

βf (ϕX,ϕX) + βf (X,X) = {∇′f
Xf∗X − f∗∇XX +∇′f

ϕXf∗ϕX − f∗∇ϕXϕX}
= {∇′f

Xf∗X+∇′f
ϕXϕ′ff∗X − f∗(∇XX +∇ϕXϕX)}.

Next, since both M and M ′ satisfy the ϕ-condition, by (5.2)

βf (ϕX,ϕX) + βf (X,X) =
(

ϕ′ff∗ − f∗ϕ
)

[ϕX , X ] = 0.

Hence f is Levi pluriharmonic. Conversely, we suppose that f is Levi plurihar-
monic. Then f is Levi harmonic. On the other hand by Corollary 4.2

τH(f) = −trace(ϕ∇ξ)ϕ′f f∗ ξ .

Since for a contact semi-Riemannian manifold trace(ϕ∇ξ) = 2nε 6= 0, we get
ϕ′ f∗ ξ = 0 and thus f∗ ξ = λ ξ′ for some λ ∈ C∞(M,R), that is f∗η′ = λ η.
Then

ξ(λ) η − dλ = (dλ ∧ η)(ξ , ·) = d(λη)(ξ , ·)
= (d f∗η′)(ξ , ·) = (f∗ d η′)(ξ , ·)
= (dη′)(f∗ξ , f∗·) = λ (dη′)(ξ′ , f∗·).
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On the other hand, since ξ′ is a geodesic vector field, we have

2(dη′)(ξ′, X) = ξ′η′(X)−Xη′(ξ′)− η′([ξ′, X ])

= εg′(∇′
ξ′ξ

′, X)

= 0.

Therefore dλ = ξ(λ) η and consequently

ξ(λ) η ∧ dη = dλ ∧ dη = −d(dλ ∧ η) = −d(ξ(λ) η ∧ η) = 0.

So, since η is a contact form, we get that ξ(λ) = 0. This gives that λ is a
constant and f is a pseudohermitian map. �

Let (M,ϕ, ξ, η) be an almost contact manifold. A submanifold M of M is
called an invariant submanifold if ϕpTp(M) ⊂ Tp(M) for any p ∈ M . Then, we

have two cases (cf. [18]): I) ξ is tangent to M (and then M is odd-dimensional)
or II) ξ is transverse to M (and then M is even-dimensional). When M is a
contact semi-Riemannian manifold case II doesn’t occur (cf. [5], p. 122). We
consider the case I, and then M carries the induced almost contact structure
(ϕ, ξ, η) given by

ϕ ◦ i∗ = i∗ ◦ ϕ, η = i∗ η, ξ = i∗ξ,(5.3)

where i : M → M is the inclusion. In particular i is a CR map.
Now, we assume that (M,ϕ, ξ, η, g) is an almost contact semi-Riemannian

manifold, M an odd-dimensional invariant submanifold of M equipped with
the induced almost contact structure (ϕ, ξ, η), and let g be a semi-Riemannian
metric on M such that g = i∗ g. Then g is compatible with (ϕ, ξ, η), that is
(ϕ, ξ, η, g) is an almost contact semi-Riemannian structure on M . In such case
we say that M is an invariant semi-Riemannian submanifold of M .

Suppose that M satisfies the ϕ-condition. Then for any X ∈ H
∇ϕXϕX +∇XX = ϕ[ϕX , X ],

and hence (by the Gauss formula)

(5.4) ∇ϕXϕX + α(ϕX,ϕX) +∇XX + α(X,X) = ϕ[ϕX,X ].

The tangential and normal components of (5.4) give

∇ϕXϕX +∇XX = ϕ[ϕX,X ],

and

(5.5) α(ϕX,ϕX) + α(X,X) = 0

for any X ∈ H. Thus by (5.5) the inclusion i is Levi-pluriharmonic.
Next, we note that if (ϕ, ξ, η, g) is a contact semi-Riemannian structure on

M , then from (5.3) follows that

dη = d i∗η = i∗dη = g(i∗, ϕ ◦ i∗)
= g(i∗, i∗ ◦ ϕ) = (i∗g)(·, ϕ) = g(·, ϕ),
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that is, (M,ϕ, ξ, η, g) is an invariant contact semi-Riemannian manifold of M .
Therefore, using also Theorem 5.2, we get:

Theorem 5.3. Let (M,ϕ, ξ, η, g) be an almost contact semi-Riemannian man-

ifold satisfying the ϕ-condition. If (M, g) is an odd-dimensional invariant semi-

Riemannian submanifold of M , then the inclusion i : M → M is Levi plurihar-

monic. In particular, if M is a contact semi-Riemannian manifold and M is an

invariant semi-Riemannian submanifold of M , then the inclusion i : M → M
is Levi pluriharmonic and a pseudohermitian map.

Now we give some examples of Levi pluriharmonic maps.

Sasakian space forms. Let M2n+3(c) be a complete simply connected Sasa-
kian manifold of constant φ-sectional curvature c. As well known M2n+3(c) is
equivalent to one of the Sasakian manifolds S2n+3, R2n+3 orDn+1×R equipped
with Sasakian structures of ϕ-sectional curvature c > −3, c = −3 and c < −3,
respectively, whereDn+1 ⊂ Cn+1 is a simply connected bounded domain. Then
M2n+1(c) is an invariant submanifold of M2n+3(c) (cf. [19], p. 328) and, by
Theorem 5.3, the inclusion i : M2n+1(c) → M2n+3(c) is Levi pluriharmonic

and a pseudohermitian map.

The Brieskorn sphere. Let C
n+1 with the Cartesian complex coordinates

z = (z0, . . . , zn) and a = (a0, . . . , an) ∈ Zn+1 such that aj ≥ 2. Let us con-
sider the polynomial Pa(z) =

∑n
j=0 z

aj

j ∈ C[z]. Then B2n(a) = {z ∈ Cn+1 :

Pa(z) = 0} is an algebraic hypersurface in Cn+1 and B2n(a) \ {0} is an n-
dimensional complex submanifold. Let us set Σ2n−1(a) = B2n(a)∩ S2n+1 (the
Brieskorn sphere determined by a). By a result in [19], pp. 303–305, S2n+1 ad-
mits a Sasakian structure (ϕ, ξ, η, g) (distinct from the standard Sasakian struc-
ture) such that Σ2n−1(2, . . . , 2) is an invariant submanifold of (S2n+1, ϕ, ξ, η, g).
Thus, the inclusion i : Σ2n−1(2, . . . , 2) → S2n+1 is Levi pluriharmonic and a

pseudohermitian map.

Let Qn = π0(B
2n+2(2, . . . , 2)) be the complex quadric, where π0 : Cn+2 \

{0} → CPn+1 is the projection. Let π : S2n+3 → CPn+1 be the Hopf fibration.
The saturated set P = π−1(Qn) is the total space a circle bundle S1 → P →
Qn. Then P is a invariant submanifold of the sphere S2n+3 equipped with the
standard Sasakian structure (cf. [19], p. 328). Hence the inclusion P → S2n+3

is Levi pluriharmonic and a pseudohermitian map.

Remark 5.4. Let (M,ϕ, ξ, η, g) be a contact Riemannian manifold and M an
invariant submanifold of M equipped with the induced contact Riemannian
structure (M,ϕ, ξ, η, g). We put

gL = g − 2 η ⊗ η and gL = g − 2 η ⊗ η = i∗gL.

Then, (ϕ, ξ, η, gL) is a contact Lorentzian structure on M with ξ time-like, and
such structure is Sasakian if and only if the corresponding Riemannian structure
is Sasakian [6]. Moreover, M equipped with the contact Lorentzian structure
(ϕ, ξ, η, gL) is an invariant Lorentzian submanifold of the contact Lorentzian
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manifold (M,ϕ, ξ, η, gL). Therefore, the inclusion i : M → M is Levi plurihar-
monic and a pseudohermitian map between two contact Lorentzian manifolds.
In particular, the above examples define Levi pluriharmonic and pseudohermi-
tian maps between contact Lorentz-Sasakian manifolds.

6. Levi harmonicity of quasi-cosymplectic manifolds

In this section we study the harmonicity of a CR map defined on a quasi-
cosymplectic manifold. Recall that an almost contact Riemannian manifold M
is said to be quasi-cosymplectic (cf. [7], and [8] p. 666) if

(∇Xϕ)Y + (∇ϕXϕ)ϕY = η(Y )∇ϕXξ, X, Y ∈ X(M).(6.6)

By a result of Z. Olszak (cf. [13], Lemma 2.2, p. 240) any almost cosymplectic
manifold satisfies (6.6). So, the class of quasi-cosymplectic manifolds is large, it
contains the classes of cosymplectic and almost cosymplectic manifolds. In the
paper [14] we classified all simply connected homogeneous almost cosymplectic
three-manifolds. Moreover, there exist examples of quasi-cosymplectic mani-
folds which are not almost cosymplectic (see, for example [7], and [8] p. 668).

Next, let M be a quasi-cosymplectic manifold. Then, for X ∈ ker(η) and
Y = ϕX , (6.6) implies

(∇Xϕ)ϕX = (∇ϕXϕ)X,(6.7)

equivalently ∇XX +∇ϕXϕX = ϕ[ϕX,X ]. Thus any quasi-cosymplectic man-
ifold satisfies the ϕ-condition.

Now, let f : M → M ′ be a CR map among two quasi-cosymplectic manifolds.
Then one gets

βf (ϕX,ϕX) + βf (X,X) = {∇′f
Xf∗X − f∗∇XX +∇′f

ϕXf∗ϕX − f∗∇ϕXϕX}
= {∇′f

Xf∗X +∇′f
ϕXϕ′ff∗X− f∗(∇XX +∇ϕXϕX)}.

Consequently, since both M and M ′ satisfy the ϕ-condition,

βf (ϕX,ϕX) + βf (X,X) =
(

ϕ′ff∗ − f∗ϕ
)

[ϕX , X ]

=
(

ϕ′ff∗ − f∗ϕ
)

g
(

[ϕX , X ], ξ
)

ξ.

Besides, Y = ξ in (6.6) gives

ϕ∇Xξ = −∇ϕXξ, ∇ξξ = 0.(6.8)

Using (6.8), we have

g
(

[ϕX , X ], ξ
)

= g
(

∇ϕXX, ξ
)

− g
(

∇XϕX, ξ)

= −g
(

∇ϕXξ,X
)

+ g
(

∇Xξ, ϕX)

= g
(

ϕ∇Xξ,X
)

+ g
(

∇Xξ, ϕX)

= 0.

Then, βf (ϕX,ϕX) + βf (X,X) = 0, and by (5.1), we get:
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Theorem 6.1. Any CR map f : M → M ′ among two quasi-cosymplectic

manifolds is Levi pluriharmonic.

Next, by (6.7) and (6.8), we get that any quasi-cosymplectic manifold satis-
fies

trace(ϕ∇ξ) =

n
∑

α=1

{g(ϕ∇Eα
ξ, Eα) + g(ϕ∇ϕEα

ξ, ϕEα)}

=
n
∑

α=1

{g(ϕ∇Eα
ξ, Eα) + g(∇Eα

ξ, ϕEα)}

= 0 .

Consequently, by Theorem 4.3, we have:

Theorem 6.2. A CR map f : M → M ′ among two quasi-cosymplectic man-

ifolds is a harmonic map if and only if f∗ ξ is a geodesic vector field. In par-

ticular, any CR map f : M → M ′ among two quasi-cosymplectic manifolds

satisfying f∗ ξ = cξ′, for some c ∈ R, is a harmonic map.
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