• Title/Summary/Keyword: tension distribution

Search Result 405, Processing Time 0.021 seconds

Fuel Spray Characteristics of Dimethyl Ether (DME 연료의 분무 특성에 관한 연구)

  • Lee, Sang Hoon;Chon, Mun Soo
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • This paper describes the atomization characteristics, as well as the velocity and size distribution, of DME spray based on common-rail injection system. To analyze the possibility of using DME fuel as an alternative fuel of diesel, spray atomization characteristics were investigated. For this investigation, two-dimensional phase Doppler analyzer system was used to obtain droplet size and velocity distribution simultaneously. Velocity and droplet size measurements were performed at various injection pressures. Results showed that increasing pressure from 25MPa to 50MPa leads to higher spray droplet velocities and smaller droplet diameter but injection pressure above 40MPa, no signifiant reduction was observed. With the droplet velocity and SMD comparison between diesel and DME fuel, it can be observed that DME has smaller SMD and droplet velocity due to its low surface tension.

  • PDF

Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil (풍화토 지반에 적용된 인장형 앵커의 주면마찰응력 분포특성에 대한 수치해석적 연구)

  • Jeong, Heyon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.39-56
    • /
    • 2017
  • Distribution of both axial force and skin friction should be investigated in order to estimate pull-out capacity of ground anchors. Numerical method of computing load-transfer characteristics of the ground anchors, however, has not been specified and studies on this area are not sufficient. This study suggested the numerical method of simulating the characteristics of axial force and skin friction distribution against the tension type ground anchors. Also, debonding behaviors of skin friction and axial force were calculated by the suggested numerical method as a function of load levels. As a result of the review, it is confirmed that the distributions of axial force and skin friction by the suggested numerical method are relatively similar to those of field test results.

The Stress Distribution around a Circular Hole Reinforced by a Ring of Different Material in a Plate under Biaxial Loading (이질원환(異質圓環)으로 보강(補强)된 원형(圓形)구멍 주위(周圍)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-67
    • /
    • 1969
  • The effect of a circular hole reinforced by a ring of different material in a plate under biaxial loadings is considered. In this problem, an infinitely large flat is assumed. The reinforcing ring is of uniform rectangular cross-section of same thickness as the plate. The outer boundary of the ring is cemented to the inner boundary of the hole in the plate. The plate is subjected to hydrostatic tension and pure shear loadings. The stress distribution around the hole is obtained by means of the two dimensional theory of elasticity. To conform the validities of above solutions, a series of photo-elastic stress analysis for a composite model was carried out. Fair agreements were observed between two sets of values. The conclusions arrived at are as follows: 1) The theoretical solutions are exact ones for the case of infinitely large flat plate. 2) The solutions can be used for most case of engineering problem if the bonding between the plate and ring is perfect. 3) If the ratio of Young's moduli of the ring and the plate is increased, the stresses in the plate decrease whereas those in the ring increase. 4) The stress concentration near the hole has localized effect. 5) Under hydrostatic tension, maximum principal stress and maximum shear stress increase as the ratio of inner and outer diameters of the ring increases. 6) Under pure shear, the stresses depend upon angular orientations of the points and maximum principal stress and maximum shear stress appear at 45 degree. They increase as the ratio of inner and outer diameters of the ring increases.

  • PDF

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.

Case Study on Location of Possible Tension Crack in Rock Slope (암반 비탈면의 인장균열 위치 선정에 관한 사례 연구)

  • Jeon, Byung-Gon;Kim, Jiseong;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.5-17
    • /
    • 2021
  • This study aims to investigate the causes and countermeasures for the occurrence of tension cracks in the slope of the rock mass of heavy equipment for road construction. Electric resistivity survey was performed to investigate the expandable tensile crack range. As a result of examining the distribution of soft zones in the rock mass, a low specific resistance zone was found at the bottom of the access road where tensile cracks occurred. It was confirmed that a low resistivity zone was distributed near the top of the excavation slope. Therefore, reinforcements was performed by determining the location of the possible tensile crack as the top of the excavation slope. Two rows of reinforced piles and anchors were proposed as a reinforcement method, and the slope stability analysis showed that the allowable safety factor was satisfied after reinforcements.

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.

A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS (Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Analysis of the Wave Exciting Forces and Steady Drift Forces on a Tension Leg Platform in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 인장계류식 해양구조물에 작용하는 파강제력 및 정상표류력 해석(주파수영역 해석))

  • 이창호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2001
  • A numerical procedure is described for simultaneously predicting the wave exciting forces and drift forces on a Tension Leg Platform (TLP) in multi-directional irregular waves. The numerical approach is based on a three dimensional source distribution method to the wave exciting forces, a far-field method to the steady drift forces and a spectral analysis technique of directional waves. The spectral description for the linear system of TLP in the frequency domain is sufficient to completely define the wave exciting forces and steady drift forces. This is because both the wave inputs and the outputs are stationary Gaussian random process of which the statistical properties in the amplitude domain are well known. Numerical results of steady drift forces are compared with the experimental and numerical ones, which are obtained in the literature. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Chemical Characteristics of Abiotic-Stressed Tobacco Stems for the Utilization of a Non-Wooden Biomass (비목질 재료의 바이오매스화를 위한 환경 스트레스 담배줄기의 화학조성)

  • Kim, Kang-Jae;Hong, Sung-Bum;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Abiotic-stressed tobacco stems as a non-wooden biomass were analyzed for their chemical characteristics. Light-stressed tobacco stems (LST) have a relatively high nitrogen concentration, much more extractive content, and a similar amount of lignin and higher contents of acid sugars than those of Non stressed tobacco (NST). It also has low cellulose crystallinity and a high degree of condensation. Guaiacyl units having a lower molecular weight distribution consist of rich lignin. Tension stressed tobacco (TST) growth differentiation under tensile stress was significantly different between normal tissue and cell walls, with the exception of the slightly higher cellulose crystallinity observed for.