• Title/Summary/Keyword: tensile strength reduction

Search Result 515, Processing Time 0.024 seconds

The effect of heat input and PWHT on the mechanical properties and microstructure of HSB600 steel weldments with GMAW (HSB600강 가스메탈아크용접부에서 입열량과 용접후 열처리가 기계적 특성과 미세조직에 미치는 영향)

  • Ju, Dong-Hwi;Jang, Bok-Su;Lim, Young-Min;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1939-1946
    • /
    • 2012
  • High performance steel for bridges requires higher performance in tensile and yield strength, toughness, weldability, etc. The purpose of this study is to investigate the weldability of HSB 600 steel. The effects of heat input (1.4~3.2kJ/mm) and postweld heat treatment (PWHT, $600^{\circ}C$, 40hr.) on the TMCP HSB600 steel weldments made by GMAW process were investigated. The tensile strength and hardness of as-welded specimens decreased with increasing heat input. Charpy V-notch impact energy did not show any significant difference by postweld heat treatment. The fine-grained acicular ferrite was mainly formed in the 2.1kJ/mm of heat input while polygonal and side plate ferrites were dominated in the high inputs. Meanwhile, tensile strength and hardness of PWHT weldments decreased due to the coarsening and globularization of ferrite microstructure and reduction of residual stresses with increasing heat inputs. However, there was no significant difference in the impact energy absorption.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

A Comparative Study on the Characteristics of Accelerated aging at Low and High Temperatures of the Fluorocarbon Rubber Composites (불소 고무복합체의 저온과 고온촉진노화 특성에 대한 비교 연구)

  • Park, JeongBae;Lee, BeomCheol;Jeong, YoonSeok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.915-922
    • /
    • 2017
  • The study on the thermal and oil resistance rubber composite, 2016. [6] predicted the lifetime of Fluorocarbon Rubber by accelerating aging at high temperature ($150^{\circ}C$, $175^{\circ}C$, $200^{\circ}C$). general rubber products are likely to exhibit different properties depending on the degradation factors such as temperature, humidity, ozone, light, emulsion, mechanical and electrical stress. To solve these problems, We compared the rate of change about tensile strength, elongation rate, volume change rate, weight change rate, thickness change rate, thermal conductivity in low temperature promoting aging on the basis of predictive lifetime of high temperature promoting aging. As a result of the review, the required life expectancy was satisfied, but there was a slight difference in the rate of change between the high-temperature promoted aging life result and the low temperature promoted aging life result. The cause was a reduction in "tensile strength / elongation" and an increase in "volume / weight / thickness" caused by the main chain decomposition of fluorine rubber due to aging at high temperature promoting aging. However, the low temperature promoting aging was caused by the curing reaction of fluorine rubber at $80^{\circ}C$. The tensile strength / elongation and volume / weight / thickness changes were small.

  • PDF

An Investigation on the Ultimate Strength of Duplex Stainless Steel (STS329FLD) Bolted Connections with Two Bolts (2행 1열 듀플렉스계 스테인리스강(STS329FLD) 볼트접합부의 최대내력 조사)

  • An, Sung-Ho;Kim, Geun-Young;Hwang, Bo-Kyung;Kim, Tae-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.55-63
    • /
    • 2018
  • Recently, the use of duplex stainless steel which with a two-phase microstructure (equal mixture of ferrite and austenite) has been increased in a variety of industrial fields due to higher strength leading to weight saving, greater corrosion resistance(particularly, stress corrosion cracking) and lower price. However, currently, stainless steels are not included in the structural materials of Korean Building Code and corresponding design standards are not specified. In this paper, experimental studies have been performed to investigate the structural behaviors of duplex stainless steel (STS329FLD) bolted connection with two bolts for providing the design data. Main variables are shear connection type (single shear and double shear) and end distance parallel to the direction of applied force. Fracture modes at the final step of test were classified into typical block shear fracture, tensile fracture and curling. Curling occurrence in single shear connection led to ultimate strength drop by up to 20%. Test strengths were compared with those by current design specifications such as AISC/AISI/KBC, EC3 and AIJ and proposed equations by existing studies. For specimens with no curling, Clement & Teh's equation considering the active shear plane provided a higher strength estimation accurancy and for specimens with curling, Kim & Lim's equation considering strength reduction by curling was also overly unconservative to predict the ultimate strength of curled connections.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Effect of PCC Pretreatment with Pulp Powder on the Paper Properties (목재펄프 분말을 이용한 PCC 전처리가 종이 성질에 미치는 영향)

  • Kwak, Gun Ho;Cho, Byoung-Uk;Lee, Yong-Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • Various approaches have been tried to reduce the emission of carbon dioxide in paper industry. One of important approaches is to use PCC manufactured from emission gas as a filler. However, it was recognized that PCC is inferior to other fillers in the paper strength properties of view. Therefore, pretreatment of PCC with pulp powder was tried to mitigate the strength reduction of paper. Pretreatment of PCC with pulp powder improved the bulk(7.4~12.9%) and air permeability(24.8~42.98%), but there is no significant change in opacity. Tensile index, burst index and stiffness were decreased by the use of pretreated PCC with pulp powder. Anionic and cationic PAM were used as a additive for PCC pretreatment in order to improve strength properties. There was no significant change in bulk in all kinds of PAM used in this study. Most strength properties were improved by the pretreatment of PCC with the anionic and cationic PAM and pulp powder, although the opacity and stiffness were more or less decreased.

Full-range plasticity of novel high-performance low-cost stainless steel QN1803

  • Zhou, Yiyi;Chouery, Kim Eng;Xie, Jiang-Yue;Shu, Zhan;Jia, Liang-Jiu
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.739-752
    • /
    • 2020
  • This paper aims to investigate cyclic plasticity of a new type of high-performance austenitic stainless steel with both high strength and high ductility. The new stainless steel termed as QN1803 has high nitrogen and low nickel, which leads to reduction of cost ranging from 15% to 20%. Another virtue of the new material is its high initial yield strength and tensile strength. Its initial yield strength can be 40% to 50% higher than conventional stainless steel S30408. Elongation of QN1803 can also achieve approximately 50%, which is equivalent to the conventional one. QN1803 also has a corrosion resistance as good as that of S30408. In this paper, both experimental and numerical studies on the new material were conducted. Full-range true stress-true strain relationships under both monotonic and cyclic loading were obtained. A cyclic plasticity model based on the Chaboche model was developed, where a memory surface was newly added and the isotropic hardening rule was modified. A user-defined material subroutine was written, and the proposed cyclic plasticity model can well evaluate full-range hysteretic properties of the material under various loading histories.