• Title/Summary/Keyword: tensile strength ratio

Search Result 1,304, Processing Time 0.038 seconds

Forming Characteristics of Laser Welded Tailored Blanks (레이저 용접 테일러드 블랭크의 성형특성)

  • 박기철;한수식;김광선;권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.121-130
    • /
    • 1998
  • In order to analyze the forming characteristics of laser welded tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and tensile, stretching, stretch flanging and deep drawing tests were done. The tensile elongation perpendicular to the weld line, stretching and stretch flanging formability decreased with increasing the deformation restraining force (strength ${\times}$ thickness) ratio between two welded sheets. The tensile elongation along weld line reached a value above 90% of the single sheet's elongation. Stretch flanging formability was reduced to approximately 10% of the single sheet value when the deformation restraining force ratio between two welded sheets was increased to two. Weld line movement of deep drawing test specimens was also affected by the strength ratio of the combined sheets, the weld line location and forming conditions. In all forming modes of tailored blanks, excessive weld line movement resulted from strain concentrations at the weaker sheet and resulted in fracture of the weaker side.

Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation (녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트)

  • Lee, Young-Joo;Jang, Jung-Kwun;Kim, Yoon-Il;Lim, Chil-Soon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

Modified Design Formula for Predicting the Ultimate Strength of High-tensile Steel Thin Plates

  • Park, Joo Shin;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.447-456
    • /
    • 2021
  • Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.

Effect of Die Casting Condition on the Mechanical Properties of AZ91HP Mg Alloy (AZ91HP 마그네슘합금의 기계적성질에 미치는 다이캐스팅 조건의 영향)

  • Ahn, Yong-Sik;Klein, F.
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.155-159
    • /
    • 2002
  • Magnesium alloys have high strength to weight ratio and are extremely attractive for applications in transport industry. Most of structural magnesium alloys are manufactured by die casting process. The tensile properties of AZ91HP magnesium alloy were investigated after die casting under various die casting conditions. After die casting by using cold chamber machine, the volume porosity of specimens was examined with density method. With the increase of the volume porosity of specimens, both the tensile strength and elongation were significantly decreased, however the 0.2% offset strength was almost independent of the amount of porosity. With the increase of crystal pressure from 500 to 900 bar during die casting, the volume porosity was decreased, which resulted in the increase of the tensile strength. The mould temperature within the range of $150{\sim}250^{\circ}C$ has not influenced the microstructure with the eutectic phase and tensile properties of specimens. The tensile strength was the highest at 90m/sec of gate speed.

An Experimental Study on the Strength of Recycled Concrete with Steam Curing (증기양생 재생콘크리트의 강도특성에 관한 실험연구)

  • Lee, Myung-Kue;Kim, Kwang-Seo;Lee, Keun-Ho;Jung, Sang-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.89-95
    • /
    • 2005
  • Various tests are performed with the recycled concrete including compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test. The basic data obtained from the presented test could be accumulated for the purpose of utilization in concrete structure. Most of the strength tests show that strength decrease a little extent with increasing substitution ratio of recycled coarse aggregate except splitting tensile test for the concrete with $100\%$ recycled fine aggregate. But in case of the $50\%$ substitution of recycled coarse aggregate, compressive strength, flexural strength and bonding strength are almost equal to the normal concrete. Chloride ion penetration test shows that the penetration amounts of chloride ion becomes more in proportion to the substitution ratio of recycled aggregate. But most of the results show that the permeability of recycled concrete is proper to use. The results of present study nay imply that the use of recycled aggregate for steam curing concrete is possible but the substitution ratio of recycled aggregate should be determined through further studies.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

Tensile Behavior of Reinforced Concrete Member due to Restrained Shrinkage (구속된 건조수축이 철근콘트리트 인장거동에 미치는 영향)

  • 안태송;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.315-320
    • /
    • 1998
  • The experimental set-up and one-dimensional analytical model have been developed to investigate the tensile behavior of reinforced concrete member due to restrained drying shrinkage. The experimental results have been compared with the analytical prediction of the maximum residual stress of steel and concrete due to restrained shrinkage. The tensile residual stress concrete by one-dimensional bilinear model shows 0.19 and 0.63 of tensile strength for 0.83% and 3.29 of steel ratio. The residual tensile stress of concrete increases as the steel ratio increases. The effect of steel fiber has not influenced the residual stress due to restrained shrinkage of concrete.

  • PDF

Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Hedayat, Ahmadreza;Hosseini, Seyed Shahin
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • In this study, the effect of the tensile strength and ratio of disc spacing to penetration depth on the efficiency of tunnel boring machine (TBM) is investigated using Particle flow code (PFC) in two dimensions. Models with dimensions of $150{\times}70mm$ made of rocks with four different tensile strength values of 5 MPa, 10 MPa, 15 MPa and 20 MPa were separately analyzed and two "U" shape cutters with width of 10 mm were penetrated into the rock model by velocity rate of 0.1 mm/s. The spacing between cutters was also varied in this study. Failure patterns for 5 different penetration depths of 3 mm, 4 mm, 5 mm, 6 mm, and 7 mm were registered. Totally 100 indentation test were performed to study the optimal tool-rock interaction. An equation relating mechanical rock properties with geometric characteristics for the optimal TBM performance is proposed. The results of numerical simulations show that the effective rock-cutting condition corresponding to the minimum specific energy can be estimated by an optimized disc spacing to penetration depth, which, in fact, is found to be proportional to the rock's tensile strength.