• Title/Summary/Keyword: temporal resolution

Search Result 685, Processing Time 0.025 seconds

Utility of Brain Computed Tomography in Detecting Fractures of the Temporal Bones Correlated with Patterns of Fracture on High-Resolution Computed Tomography (고해상도 전산화 단층촬영에서 확인된 골절 유형에 따른 측두골 골절의 진단에서 뇌전산화 단층촬영의 유용성)

  • Kwon, Bong-Seok;Shin, Dong-Hyuk;Choi, Pil-Cho;Han, Sang-Kuk;Lee, Jeong-Hun;Song, Hyoung-Gon
    • Journal of Trauma and Injury
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • Purpose: The clinical utility of brain computed tomography (CT) in detecting temporal bone fracture is not well established. We performed this study to determine the utility of brain computed tomography (CT) in detecting fractures of the temporal bones in correlation with fracture patterns. We used high resolution computed tomography (HRCT) as the gold standard for diagnosing temporal bone fracture and its pattern. Methods: From January 2007 to December 2009, patients who underwent both brain CT and HRCT within 10 days of head trauma were investigated. Among them, 58 cases of temporal bone fracture confirmed by HRCT were finally included. Fracture patterns (transverse or non-transverse, otic capsule sparing or otic capsule violating) were determined by HRCT. Brain CT findings in correlation with fracture patterns were analyzed. Results: Among 58 confirmed cases of temporal bone fracture by HRCT, 14 cases (24.1%) were not detected by brain CT. Brain CT showed a significantly lower ability to detect temporal bone fracture with transverse component than without transverse component (p=0.020). Moreover, brain CT showed lower ability to detect otic capsule violating pattern than otic capsule sparing pattern (p=0.015). Among the 14 cases of temporal bone fracture that were not detected by brain CT, 4 cases lacked any objective physical findings (facial palsy, hemotympanum, external auditory canal bleeding) suggesting fractures of the temporal bones. Conclusion: Brain CT showed poor ability to detect temporal bone fracture with transverse component and otic capsule violating pattern, which is associated with a poorer clinical outcome than otic capsule sparing pattern. Routine use of HRCT to identify temporal bone fracture is warranted, even in cases without evidence of temporal bone fracture on brain CT scans or any objective physical findings suggestive of temporal bone fracture.

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Spatial and Temporal Resolution Selection for Bit Stream Extraction in H.264 Scalable Video Coding (H.264 SVC에서 비트 스트림 추출을 위한 공간과 시간 해상도 선택 기법)

  • Kim, Nam-Yun;Hwang, Ho-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.102-110
    • /
    • 2010
  • H.264 SVC(Scalable Video Coding) provides the advantages of low disk storage requirement and high scalability. However, a streaming server or a user terminal has to extract a bit stream from SVC file. This paper proposes a bit stream extraction method which can get the maximum PSNR value while date bit rate does not exceed the available network bandwidth. To do this, this paper obtains the information about extraction points which can get the maximum PSNR value offline and decides the spatial/temporal resolution of a bit stream at run-time. This resolution information along with available network bandwidth is used as the parameters to a bit stream extractor. Through experiment with JSVM reference software, we proved that proposed bit stream extraction method can get a higher PSNR value.

Statistical network analysis for epilepsy MEG data

  • Haeji Lee;Chun Kee Chung;Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.561-575
    • /
    • 2023
  • Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Magnetoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static/temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network differences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.

A Study on Misdiagnosis Rates of Ejection Fraction Associated with Cardiac Computed Tomography: Suggestions and Correction for Improvement (심장 전산화단층촬영을 이용한 박출계수 산출 시 박출계수의 보정을 통한 오진율 개선에 관한 연구)

  • Na, Sa-Ra;Jeong, Mi-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.437-444
    • /
    • 2021
  • The aim of this study was to compare the cardiac CT and cardiac MRI in calculating and correcting the left ventricle ejection fraction by analyzing the physical and temporal resolution for reducing the misdiagnosis rate. One hundred thirty-eight patients with aortic value regurgitation who underwent both cardiac CT and cardiac MRI were analyzed. Left ventricle ejection fractions calculated from each exam were corrected based on the physical and temporal resolution differences and the reliability test evaluated whether the misdiagnosis rate of cardiac CT was improved after the correction. As a result of the study, the misdiagnosis rate of cardiac CT ejection fraction before correcting the difference in physical and temporal resolution was 38.4%(53 persons). In addition, it can be seen that the corrected cardiac CT ejection fraction confirmed in the Bland-Altman plot was highly consistent with the ejection fraction of cardiac MRI. In conclusion, as the cardiac CT is less well suited for measuring ejection fraction, physical characteristics and the time resolution correction using cardiac MRI is needed and the misdiagnosis rate after correction decreased to 14.5%(20 persons). Therefore, this study appears more appropriate for better prediction of ejection fraction and clinical utility.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Spatio-temporal analysis of land price variation considering modifiable area unit problem (가변적 공간 단위의 문제를 고려한 지가 변동의 시공간 분석)

  • 오충원
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.185-199
    • /
    • 2002
  • The objective of this study is to investigate the suitable spatio-temporal analysis method considering the zoning effect of spatial analysis termed the modifiable areal unit problem(MAUP). In former studies of spatio-temporal analysis, there were disagreement between attribute data with spatial data, because of variation of administrative district aggregating attribute data. It is need to consider how the analysis zone effects spatial characteristics and spatio-temporal variation of urban region through land price variation analysis. This study considers MAUP through basic mesh system, which is composed of micro grid. Mesh system can solve disagreement of resolution between spatial data and attribute data.

  • PDF

A Review of Eye-tracking Method in Elementary Science Education Research (초등과학 교육연구에서 시선추적 연구방법의 고찰)

  • Shin, Won-Sub
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.288-304
    • /
    • 2016
  • The purpose of this study is a review of previous studies and principles of eye-tracking techniques that are actively applied in recent elementary science education. Also it proposes to utilize the direction of eye tracking techniques in elementary science education research. Recent eye-tracking technology was developed, using the infrared pupil and the corneal reflection can be safely and accurately track the eye movements of the participants. Eye tracking has the advantage of higher temporal resolution, accessibility, convenience, objectivity, stability and safety. Analysis of the previous studies, there was a difference in the study design and analysis. The workshops and seminars are needed for accurate understanding of eye-tracking method in elementary science education research. In conclusion, the eye-tracking can be utilized such as effectiveness analysis of teaching materials and media, behaviors analysis of teachers and students in a real class, cognitive strategies and attention analysis of the student, discriminating tool of various education evaluation, etc.

Development of Agriculture-related Data Inventories Using IKONOS Images

  • Kim Seong Joon;Hong Seong Min;Lee Mi Seon;Lim Hyuk Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.618-620
    • /
    • 2004
  • This paper explores the use of IKONOS imagery of 1 m resolution panchromatic (PAN) band and 4 m resolution multi-spectral (MS) band in the development of agriculture­related data inventories. Three images (May 25, 2001, December 25, 2001, October 23, 2003) were used to obtain temporal distributions in crop cover characteristics such as rice, pear, grape, red pepper, corn, barley, garlic and surface water cover of reservoir with field investigations. The availability and cost problems are expected to solve by KOMPSAT-2 that is scheduled to launch in 2005. The capability of KOMPSAT-2 image for crop and rural water resources management will increase by accumulating temporal data inventories as a database.

  • PDF