• Title/Summary/Keyword: template synthesis

Search Result 237, Processing Time 0.028 seconds

Synthesis of Double Mesoporous Silica Nanoparticles and Control of Their Pore Size (이중 다공성 실리카 나노입자 합성 및 공극 크기 조절)

  • Park, Dae Keun;Ahn, Jung Hwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.167-169
    • /
    • 2021
  • In this study, monodispersive silica nanoparticles with double mesoporous shells were synthesized, and the pore size of synthetic mesoporous silica nanoparticles was controlled. Cetyltrimethylammonium chloride (CTAC), N, N-dimethylbenzene, and decane were used as soft template and induced to form outer mesoporous shell. The resultant double mesoporous silica nanoparticles were consisted of two layers of shells having different pore sizes, and it has been confirmed that outer shells with larger pores (Mean pore size > 2.5 nm) are formed directly on the surface of the smaller pore sized shell (Mean pore size < 2.5 nm). It was confirmed that the regulation of the molar ratio of pore expansion agents plays a key role in determining the pore size of double mesoporous shells.

Synthesis of Mesoporous Hollow Silica Sphere Using Water Glass: Filler for Weight Reduction of Rubber

  • Mun, Hanjun;Bae, Jae Young
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.277-280
    • /
    • 2020
  • In this study, mesoporous hollow silica spheres were synthesized using a polystyrene core and cetyltriammonium chloride (CTACl) as a pore template, and a low-cost water glass instead of expensive tetraethyl orthosilicate (TEOS) as a precursor. In addition, the material was synthesized by varying the concentration of polystyrene. Later, the polystyrene core and CTACl were removed by firing in a high-temperature heat-treatment process. The synthesized product was analyzed by various methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), and N2-sorption analysis. It was confirmed that the hollow silica sphere had a hexagonal structure with a Brunauer-Emmett-Teller (BET) specific area of 1623 ㎡/g.

Synthesis of vertically aligned silicon nanowires with tunable irregular shapes using nanosphere lithography

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • Silicon nanowires (SiNWs), due to their unusual quantum-confinement effects that lead to superior electrical and optical properties compared to those of the bulk silicon, have been widely researched as a potential building block in a variety of novel electronic devices. The conventional means for the synthesis of SiNWs has been the vapor-liquid-solid method using chemical vapor deposition; however, this method is time consuming, environmentally unfriendly, and do not support vertical growth. As an alternate, the electroless etching method has been proposed, which uses metal catalysts contained in aqueous hydrofluoric acids (HF) for vertically etching the bulk silicon substrate. This new method can support large-area growth in a short time, and vertically aligned SiNWs with high aspect ratio can be readily synthesized with excellent reproducibility. Nonetheless, there still are rooms for improvement such as the poor surface characteristics that lead to degradation in electrical performance, and non-uniformity of the diameter and shapes of the synthesized SiNWs. Here, we report a facile method of SiNWs synthesis having uniform sizes, diameters, and shapes, which may be other than just cylindrical shapes using a modified nanosphere lithography technique. The diameters of the polystyrene nanospheres can be adjustable through varying the time of O2 plasma treatment, which serve as a mask template for metal deposition on a silicon substrate. After the removal of the nanospheres, SiNWs having the exact same shape as the mask are synthesized using wet etching technique in a solution of HF, hydrogen peroxide, and deionized water. Different electrical and optical characteristics were obtained according to the shapes and sizes of the SiNWs, which implies that they can serve specific purposes according to their types.

  • PDF

A Synthesis Method of Software Fault Tree from NuSCR Formal Specification using Templates (템플릿에 기반한 NuSCR 정형 명세의 소프트웨어 고장 수목 생성 방법)

  • Kim, Tae-Ho;Yoo, Jun-Beom;Cha, Sung-Deok
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1178-1191
    • /
    • 2005
  • In this paper, we propose a synthesis method of software fault tree from software requirements specification written in NuSCR formal specification language. The software fault tree, proposed in this paper, reflects requirements on both structure and behavior and it is an integrated form. The software fault tree can be used for analyzing safety in the view of structure and behavior. We propose templates for each components in NuSCR specification language and a synthesis method of software fault tree using the templates. The research was applied into the main trip logic of the reactor protection system of ARP1400, the Korean next generation nuclear reactor system, developed by KNICS. And we evaluate feasibility of our approach through this case study.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Uniform ZrO2 nanoballs were synthesized at 700℃ using the inverse replication method through a colloid-imprinted carbon (CIC) template. The structural, dielectric, and conducting properties of the ZrO2 nanoballs were investigated and compared with those of ZrO2 film prepared by sol-gel method and powdered ZrO2 chemical. Both the monoclinic and cubic phases were found in the ZrO2 balls and film but the ZrO2 chemical showed a monoclinic phase, where the cubic structure is known to be formed at above 2,300℃. ZrO2 nanoballs showed the lower dielectric property of k = 21.2 at 1 MHz because the 8-coordinated cubic phase in the ZrO2 nanoball produced lower polarization than the polarization of the 7-coordinated monoclinic ZrO2 chemical (k = 23.6). The dielectric stability was maintained in each ZrO2 ball, film, and chemical under the applied forward and reverse voltage range (−5 to +5 V) at 1 MHz. The ionic conductivities were 7.86 × 10−8/Ω·cm for ZrO2 nanoballs, 3.29 × 10−8/Ω·cm for ZrO2 chemical, and 6.70 × 10−5/Ω·cm for the thickness of 1,053 nm ZrO2 film at room temperature with the electronic contribution being less than 0.006%.

Influencing Factors on the Crystallizations of ZSM-5 in the Absence of Organic Template (유기 템플레이트 배제하의 ZSM-5 결정화에 따른 영향인자)

  • Kim, Wha-Jung;Lim, Chang-Whan;Lee, Seung-Ae;Lee, Myung-Chul;Jeong, Chan-Yee
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.776-784
    • /
    • 1993
  • A pentasil zeolite, ZSM-5 was synthesized in the absence of organic template, $TPA^+$ ion at $210^{\circ}C$. It was realized that a conventional method can not be applied to the synthesis system where organic templates are not used. The results indicated that the compositional range for the crystallization of ZSM-5 is very narrow, requiring very careful controls in the $Na_2O/SiO_2$and $SiO_2/Al_2O_3$ratios. In addition, the results showed that the effects of mixing method, aging and reaction time on the crystallization of ZSM-5 were extraordinarily significant.

  • PDF

GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property (갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성)

  • Lim, Hyun-Chul;Chandrasekar, P.V.;Chang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.

Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film (다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작)

  • Noh, Ji-Seok;Chin, Won-Bai
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.518-526
    • /
    • 2006
  • Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.

A Method Of Compound Noun Phrase Indexing for Resolving Syntactic Diversity (구문 다양성 해소를 위한 복합명사구 색인 방법)

  • Cho, Min-Hee;Jeong, Do-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.467-476
    • /
    • 2011
  • Compound noun phrase (CNP) is important factor for semantic information process because the meaning of the CNP is more disambiguous than that of single word. However, the CNP can be expressed in various types even though it expresses same meaning. It is called syntactic diversity. It makes information system difficult to grasp sense identity. In order to resolve the syntactic diversity in this research, we propose an indexing method for compound noun phrase. The main purpose is to make identical index term for various types of CNPs which has same meaning. To do so, the research follows next steps. For the first, we make rule template and utilize the template to extract CNPs from set of domestic research papers. In general, the CNP has a unique meaning. Considering the characteristic, we suggest synthesis rules of index terms and apply the rule to CNPs extracted in previous step. For the objective performance evaluation of the research, a test set, HANTEC 2.0, was utilized and the result was compared to baseline model. Through the experiment and the evaluation, we have confirmed that the indexing method suggested in this paper could positively affect retrieval precision and improve performance of the information retrieval.