• Title/Summary/Keyword: tempering

Search Result 307, Processing Time 0.026 seconds

Evaluation of the Characteristics of the Aluminum Alloy(AC8A) Casting Material by Heat Treatment(II) (AC8A 알루미늄 합금 주조재의 열처리에 의한 특성 평가(II))

  • Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-36
    • /
    • 2016
  • Aluminum alloys have been widely used in engine materials, cold & hot-water storage vessels and piping etc., Furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston for various vehicles because of its properties of temperature, wear and corrosion resistance. Therefore, it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and to prolong its lifetime. In previous paper, the effect of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 16, 24, and 36 hrs)heat treatments to corrosion resistance and hardness were investigated using electrochemical method. In this study, in order to examine completely the effect of the tempering hours to hardness variation and corrosion resistance, the results of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 2, 4, 8 and 12hrs)heat treatments to hardness and corrosion resistance were investigated using electrochemical method. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment. Furthermore, the corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. And the tempering heat treatment temperature at $190^{\circ}C$ for 8 hrs exhibited the highest value of the hardness and also indicated the highest corrosion current density. However, the values of hardness and corrosion current density was again increasingly decreased with increasing of tempering hours than 8 hrs, Consequently, it is suggested that decision of the optimum. tempering hours is very important to improve the corrosion or wear resistance.

열처리에 따른 HT9강의 미세조직 변화

  • 김성호;이창규;류우석;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.72-77
    • /
    • 1998
  • 액체금속로 노심재료로 사용되고 있는 HT9강의 열처리에 따른 미세조직 변화를 관찰하였다. 열간압연상태에서의 조직은 마르덴사이트, $\delta$-페라이트, 잔류 오스테나이트, 그리고 탄화물로 이루어져 있다. 잔류 오스테나이트는 austenitization하여도 그 함량은 감소하지만 완전히 제거되지는 않았으나, tempering후에는 잔류하지 않았다. 오스테나이트 입자크기는 austenitization 온도가 증가함에 따라 성장하여 11005$^{\circ}C$에서는 약 42$\mu\textrm{m}$였다. Austenitization 온도 증가에 따라 탄화물의 평균 크기 및 평균 면적 분율은 크게 감소하고 있었다. 50$0^{\circ}C$에서 tempering한 경우에는 Fe-rich 탄화물이 석출하였으나, tempering 온도가 증가하면 Cr-rich M$_2$$_3$C$_{6}$ 탄화물이 석출하고 있었다. Austenitization 상태에서는 100$0^{\circ}C$ 까지는 탄화물의 분해가 일어나 경도값이 증가하나 100$0^{\circ}C$ 이상에서는 일정한 경도값을 나타내었다. Tempering한 시편에서는 탄화물의 석출과 전위의 회복으로 인해 tempering 온도가 증가함에 따라 경도값이 급격히 감소하였다.

  • PDF

Microstructual Change and Near-threshold Fatigue Crack Growth Behaviors of Ni-Cr-Mo-V Steel by Tempering Treatments (Ni-Cr-Mo-V강의 템퍼링에 의한 미세구조 변화와 하한계 피로균열진전 특성)

  • Shin, Hoon;Moon, Yun-Bae;Kim, Sang-Tae;Kwon, Jae-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.266-277
    • /
    • 1997
  • Near-threshold fatigue crack growth characteristics was investigated on the Ni-Cr-Mo-V low alloy steel, which has the different microstructure obtained by tempering at various temperature. The specimens were austenized at $950^{\circ}C$ and then followed by tempering at $200^{\circ}C$, $530^{\circ}C$ and $600^{\circ}C$. Strain rate was obtained from strain gauge attached on the crack tip and crack opening point was observed through load-strain curve. Threshold stress intensity range(${\Delta}K_{th}$) was increased with increasing tempering tempuerature, but the effective threshold stress intensity rage (${\Delta}K_{eff,\;th}$) was not affected with the increasing temperature. Grain size increased with increasing tempering temperature.

  • PDF

Effect of Tempering Condition on Hydrogen Diffusion Behavior of Martensitic High-Strength Steel (템퍼링 조건이 마르텐사이트계 고강도강의 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Hwang, Eun Hye;Lee, Man Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.242-248
    • /
    • 2018
  • Martensitic high-strength steels revealed superior mechanical properties of high tensile strength exceeding 1000 Mpa, and have been applied in a variety of industries. When the steels are exposed to corrosive environments, however, they are susceptible to hydrogen embrittlement (HE), resulting in catastrophic cracking failure. To improve resistance to HE, it is crucial to obtain significant insight into the exact physical nature associated with hydrogen diffusion behavior in the steel. For martensitic steels, tempering condition should be adjusted carefully to improve toughness. The tempering process involves microstructural modifications, that provide changes in hydrogen diffusion/trapping behavior in the steels. From this perspective, this study examined the relationship between tempering condition and hydrogen diffusion behavior in the steels. Results based on glycerin measurements and hydrogen permeation evaluations indicated that hydrogen diffusion/trapping behavior was strongly affected by the characteristics of precipitates, as well as by metallurgical defects such as dislocation. Tempering condition should be adjusted properly by considering required mechanical properties and resistance to HE.

The Development of High Efficiency Tempering System using Microwave (마이크로파를 이용한 고 효율 해동 시스템 개발)

  • Cho, Kook-Hee;Park, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.69-74
    • /
    • 2009
  • The tempering system which is developed by this research which sees energy curtailment and from the environmental side which is essential for in hazard analysis critical control point. The tempering system with development experimented frozen pork and fish. As test result, frozen pork region was not thawed occurred plentifully. Like this the actual condition, the case of frozen fish is grind and the bulk and density uniformly was formed, the pork the density was dense and was thought with the fact that the temperature difference change is big. Also after tempering from measurement location center the temperature appeared substitutionally with the low-end thing. This central part of the frozene region is thought the impedance change appears few. To hereafter respects an impedance change is thought that has the necessity which will change the structure of tempering system.

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF

The effect of Tempering on the Mechanical Properties of Mod. 440A Martensitic Stainless Steel (Mod. 440A 마르텐사이트 스테인리스강의 기계적 성질에 미치는 템퍼링의 영향)

  • Kwon, S.D.;Kim, Y.C.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.3
    • /
    • pp.120-125
    • /
    • 2013
  • In this study, the effect of tempering treatment on the mechanical properties in modified 440A steel has been investigated. The amount of remaining carbide decreased with increasing the austenitizing treatment temperature, and all carbides were completely dissolved at $1250^{\circ}C$. The amount of remaining carbide decreased with increasing the time of austenitizing, but the carbide remained insoluble up to 120 minutes at $1050^{\circ}C$. With increasing the tempering temperature, tensile strength decreased, and elongation increased slowly, while hardness rapidly decreased, and impact value unchanged and then rapidly increased over $500^{\circ}C$. The strength and hardness slowly decreased, while the elongation and impact absorbed energy increased with increasing the tempering time. $Cr_{23}C_6$ type carbide was precipitated and sharp decrease of elongation and toughness by tempering did not appear.

Effect of Tempering Temperature on the Microstructure and Mechanical Properties of ARMOX 500T Armor Plate (템퍼링 온도에 따른 ARMOX 500T 장갑재의 미세조직과 기계적 특성)

  • Lim, Hyeon-Seok;Lee, Jimin;Song, Young-Beum;Kim, Hong-Kyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.359-363
    • /
    • 2017
  • The resistance of metallic materials to ballistic penetration generally depends on a number of parameters related to projectile, impact, and armor plate. Recently, armor materials have been required to have various properties such as hardness, strength, and impact toughness in order to maintain an excellent ballistic resistance even after impact. In the present study, the influence of tempering on the microstructure and mechanical properties of an ARMOX 500T armor steel plate was investigated and then compared with those of S45C and SCM440 steels. As the tempering temperature increased, the hardness and strength gradually decreased, whereas the ductility and impact toughness clearly increased because the hardness, tensile, and impact properties were affected by the microstructural evolution and precipitation occurring during tempering. On the other hand, temper embrittlement appeared at tempering temperatures of 300 to $400^{\circ}C$ for the impact specimens tested at low temperature.

Influence of Austenitizing Conditions on the Mechanical Properties in 420J1 Martensitic Stainless Steel (420J1 마르텐사이트계 스테인리스강의 오스테나이트화 조건이 기계적 성질에 미치는 영향)

  • Kim, Y.J.;Joo, D.W.;Park, S.H.;Kim, G.D.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.25-34
    • /
    • 1994
  • To investigate the effect of austenitizing tempratures on the mechanical properties and corrosion resistance of 0.19%C-13.6%Cr martensitic stainless steel, the changes in martensitic trasformation temperatures, mechanical properties and anodic polarization curve were examined after changing the austenitizing temperatures and tempering temperatures. On increasing heating rate at the same austenitizing temperatures, $A_s$, $A_r$ and $M_s$ increased. And the $M_s$ temperature showed to be decreased with increasing austenitizing temperature. With increasing tempering temperature up to $500^{\circ}C$, strength, hardness and impact value were not changed remarkably, on the other hand the tensile strength and hardness decreased and impact value increased after tempering above $550^{\circ}C$ owing to the $M_{23}C_6$ carbide precipitation. The abrupt decrease in elongation at the tempering temperture of $500^{\circ}C$ proved to the precipitation of $M_7C_3$ carbide. The effect of austenitizing temperature on the mechanical properties of the tempered specimen showed to be decreased in impact value and elongation at the austenitizing temperature of $1150^{\circ}C$. At low tempering temperatures the corrosion resistance of the tempered specimen was not changed obviously with increasing tempering temperature. On the other hand, the resistance decreased above the tempering temperature of $600^{\circ}C$ due to the precipitation of $M_{23}C_6$ carbides. The corrosion resistance showed to be improved with increasing the austenitizing temperature owing to the dissolution of carbides.

  • PDF

Effect of Low Tempering Temperature on Corrosion Resistance of 420J2 Stainless Steel (420J2 스테인리스강의 내식성에 미치는 저온 템퍼링의 영향)

  • Jung, B.H.;Kim, H.J.;Kim, M.G.;Oh, I.S.;Kim, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • The effect of low tempering in a temperature range of $150{\sim}400^{\circ}C$ on corrosion resistance in 420J2 stainless steel austenitized at $1000^{\circ}C$ was investigated by the application of salt spray test, electrochemical pitting test in 3.5% NaCl solution and DL-EPR test for intergranular corrosion in 0.5M $H_2SO_4$+0.01M KSCN solution. In salt spray test, good corrosion resistance was obtained in a tempering temperature range of $150{\sim}250^{\circ}C$. Pitting potential was increased to the tempering temperature of $250^{\circ}C$, but decreased with the increase of temperature up to $400^{\circ}C$ And it was thought that the degradation of pitting corrosion resistance showed at the tempering temperature of around $400^{\circ}C$ was due to the precipitation of $Cr_7C_3$ of $M_7C_3$ type. The degree of sensitization showed increasing tendency with the increase of tempering temperature, and also Cr depletion phenomena were observed in the vicinity of grain boundary.