Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.7.359

Effect of Tempering Temperature on the Microstructure and Mechanical Properties of ARMOX 500T Armor Plate  

Lim, Hyeon-Seok (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Jimin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Song, Young-Beum (Agency for Defense Development)
Kim, Hong-Kyu (Agency for Defense Development)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.7, 2017 , pp. 359-363 More about this Journal
Abstract
The resistance of metallic materials to ballistic penetration generally depends on a number of parameters related to projectile, impact, and armor plate. Recently, armor materials have been required to have various properties such as hardness, strength, and impact toughness in order to maintain an excellent ballistic resistance even after impact. In the present study, the influence of tempering on the microstructure and mechanical properties of an ARMOX 500T armor steel plate was investigated and then compared with those of S45C and SCM440 steels. As the tempering temperature increased, the hardness and strength gradually decreased, whereas the ductility and impact toughness clearly increased because the hardness, tensile, and impact properties were affected by the microstructural evolution and precipitation occurring during tempering. On the other hand, temper embrittlement appeared at tempering temperatures of 300 to $400^{\circ}C$ for the impact specimens tested at low temperature.
Keywords
ARMOX 500T; armor plate; tempering; hardness; impact toughness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. W. Sohn and S. H. Hong, J. Korean Soc. Precis. Eng., 7, 7 (2002).
2 H. K. Kim, S. S. Hong and I. O. Shim, Compos. Res., 2, 46 (2011).
3 W. S. Lee and T. T. Su, J. Mater. Process Technol., 1, 198 (1999).
4 T. Demir, M. Ubeyli and R. O. Ylldlrlm, J. Mater. Eng. Perform., 18, 145 (2009).   DOI
5 S. N. Dikshit, V. V. Kutumbarao and G. Sundararajan, Int. J. Impact Eng., 16, 293 (1995).   DOI
6 ORDP 20-170 Ordnance Engineering Design Handbook, Armor and its application to vehicles, Ordnance Corps, (1961).
7 A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 9, 3931 (2011).
8 N. Zhong, X. D. Wang, L. Wang and Y. H. Rong, Mater. Sci. Eng. A, 1, 111 (2009).
9 ASTM. : E23-16b, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshocken (2016).
10 M. Kutz : Handbook of materials selection, John Wiley & Sons, (2002).
11 W. D. Callister and D. G. Rethwisch : Materials science and engineering, John Wiley & Sons, (2011).
12 R. A. Grange, C. R. Hribal and L. F. Porter, Metall. Trans. A, 11, 1775 (1977).
13 H. S. Lee, B. Hwang, S. Lee, C. G. Lee and S. J. Kim, Metall. Mater.Trans. A, 8, 371 (2004).
14 Y. Song, X. Li, L. Rong and Y. Li, Mater. Sci. Eng. A, 12, 4075 (2011).
15 S. Gunduz, Mater. Lett., 27, 2381 (2009).
16 S. I. Lee and B. Hwang, Korean J. Mater. Res., 24, 550 (2014).   DOI
17 D. V. Wilson and Y. A. Konnan, Acta Metall., 5, 617 (1964).
18 R. E. Reed-Hill and R. Abbaschian, Physical Metall. Principles, Cengage Learning, (1964).
19 D. H. Shin, J. Kim and K. T. Park, Met. Mater. Int., 7, 431 (2001).   DOI
20 N. S. Lim, C. W. Bang, S. Das, H. W.Jin, R. Ayer and C. G. Park, Met. Mater. Int., 18, 87 (2012).   DOI