• Title/Summary/Keyword: temperature-sensitive

Search Result 1,626, Processing Time 0.042 seconds

Growth Patterns of Temperature-sensitive Mutants of Bacillus Thuringiensis (Bacillus thuringiensis 의 Temperature-sensitive Mutants 분리와 특성 연구)

  • Lee, Hyung-Hoan;Lee, Hoon-Ku
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 1983
  • Bacillus thuringiensis was mutagenized with UV light irradiation and nitrosoguanidine. Twenty-four tem perature-sensitive ts mutants were isolated at 42$^{\circ}C$ and classified into two groups by growth on nutrient agar at 42$^{\circ}C$. First is the lethal group, which did not grow at the nonpermissive temperature, the second is the reduced group whose growth was restricted from one-half to one-fourth, Thirteen ts mutants belong to the lethal group and eleven ts mutants belong to the reduced group. Auxotrophic mutant, A-N28 required five amino acids as growth factors, A-N65 also five amino acids, A-N92 seven, A-N115 four and A-N156 three. Bacillus thuringiensis wild type is resistant to penicillin, ampicillin, and cephalothin. The ts-Ul7l, A-N92 and A-Nl15 are sensitive to the three antibiotics. The ts -U601, -U603, -U604 and -Ul71 did not grow at the permissive temperature after temperature-shifting from 42$^{\circ}C$. Four auxotrophic mutants (A-N38, A-N65, A-N92 and A-Nl15) did not form spores in their cells.

  • PDF

An Experimental Study on Temperature and Velocity Fields of the Turbulent Flows Horizontal Cylindrical Tube by Using Thermo-sensitive Liquid Crystal (수평원통 관에서 감온액정을 이용한 난류유동의 온도 및 속도장에 관한 실험적 연구)

  • 장태현;도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.921-929
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. To determine some characteristics of the turbulent flow, 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the color of the liquid crystal versus temperature using various approaches (TLC technique: Thermochromic Liquid Crystal), and a neural-network algorithm was applied to the color-to-temperature calibration. This study shoud the temperature and time-mean velocity distribution for Re = 2,436, 2,500 and 2,724 along longitudinal sections and the results appear to be physically reasonable.

Temperature-Sensitive Drug Delivery System of Acetaminophen Using Neutral Chitosan Solution (온도감응성 키토산 중성용액을 이용한 약물송달시스템)

  • Kim, Ho-Jeong;Lee, Hwa-Jeong;Koo, Young-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.229-234
    • /
    • 2008
  • In the present study, chitosan-glycerophosphate sodium salt solution as a thermosensitive system (TSS) was used to formulate a temperature-sensitive drug delivery system (TSDDS) containing acetaminophen (AAP). The optimized TSS was prepared by measuring gelation temperature, gelation time and rheological properties of TSS. The optimized gelation temperature and time of TSS were $36^{\circ}C$ and 100 seconds, respectively. The viscosity of TSS was also suitable for maintaining gel structure at $37.2^{\circ}C$. The release profiles of TSDDS in PBS/pH 7.4 with various apparatuses and mass loss of TSDDS were investigated. The time required to release 50% of AAP from TSDDS ($t_{50%}$) was 120 min with the formation of pore on the surfaces, which was 2 times longer than that from AAP-chitosan gel. In addition, TSDDS was degraded approximately 80% within 4 hr and then degraded slowly for 20 hrs. In conclusion, AAP-TSS (TSDDS) formulated in this study might be suitable for some specific uses such as subcutaneous injection and rectal formulation.

LOW DISSIPATION OF EXCITATION ENERGY IN THE PHOTOSYNTHETIC MACHINERY OF CHILLING-SENSITIVE PLANTS DURING LOWTEMPERATURE PHOTOINHIBITION

  • Moon, Byoung Yong;Lee, Shin Bum;Gong, Yong-Gun;Kang, In-Soon
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.53-61
    • /
    • 1998
  • Using a squash plant, a chilling-sensitive species, and a spinach plant, a chilling-resistant one, effects of chilling temperature on the photosynthetic machinery were studied in terms of chlorophyll fluorescence. When thylakoid membranes were isolated and subjected to incubation at different temperatures, spinach showed stable photosystem II activity at the low temperature side, in contrast to squash which showed quite severe inactivation at low temperature. When parameters of chlorophyll fluorescence were examined, chilling in darkness did not affect either Fv/Fm or photochemical and non-photochemical quenching, in both types of plants. However, chilling of squash plants under irradiance of medium intensity caused a specific decrease in Fv/Fm accompanied by a decline in energy-dependent quenching. Contrastingly, photosystem li of spinach plants were not much affected by light-chilling. When the pool size of zeaxanthin was examined after exposure to high light at different temperatures, squash plants was shown to have a much lower content of antheraxanthin + zeaxanthin, as compared to spinach plants, during low-temperature photoinhibition. These results suggest that chilling-sensitive plants have low capacity to dissipate excitation energy nonradiatively, when they are exposed to low-temperature photoinhibition, and, as a consequence, more vulnerable to photoinhibitory, damage to the photosynthetic apparatus.

  • PDF

A Study on the Influence of Extreme Heat on Daily Mortality (폭염이 일사망자수에 미치는 영향에 관한 연구)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.523-537
    • /
    • 2008
  • In Korea, the global warming leads to more frequent high temperature region. increasing the need for research into physical damage caused by high temperature. We therefore analyzed the differences of mortality, caused by extreme heat, among gender and age. We also examined the trend of mortality from high temperature-sensitive diseases. Women are more affected by exposure to high temperature than are men; People over 65 years old have higher mortality rate (1.5 times) than under 65. As for high temperature-related diseases, cerebrovascular disease was the number one cause of death, and chronic lower respiratory disease and cardiovascular disease followed.

Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions (pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.548-555
    • /
    • 2000
  • A hydrogel, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylmethacrylamide), sensitive to both pH and temperature, was synthesized and characterized at $^13∼23{\circ}C$ and pH of 10.3∼12.3. The gel was more transparent and mechanically stronger at lower preparation temperature and pH. Large pores observed in scanning electron microscope seem to be responsible for the lower biomolecular separation efficiency. The lower critical solution temperature (LCST) decreased at a higher polymerization temperature. At $25^{\circ}C$, which is lower than the LCST, the gel was swollen regardless of the solution pH. At $40^{\circ}C$, however, the gel was swollen at neutral and acidic pHs even though the temperature was higher than the LCST. The gel collapse pH, defined as the point at which the gel made its largest volume decrease per unit pH increment, increased as the gel preparation temperature increased.

  • PDF

Studies on Differentiation of Aspergillus nidulans (I) : Characterization of temperature-sensitive mutants defective in differentiation of aspergillus nidulans (Aspergillus nidulans의 분화에 있어 온도 감수성 돌연변이주의 특성)

  • 조남정;강현삼
    • Korean Journal of Microbiology
    • /
    • v.20 no.4
    • /
    • pp.173-182
    • /
    • 1982
  • From FGSC 159 strain of Aspergillus nidulans, temperature sensitive mutants that are defective in growth and differentiation have been isolated by N-methyl-N'-nitroN-nitrosoguanidine (NTG) treatment. The optimum concentration of NTG and incubation time to get the highest mutation frequency was $100{\mu}g$ per ml and 1 hour, respectively. The survival frequency was 1%. Among the isolated mutants, five strains that were affected in early steps of differentiation were selected for further studies and named smK, smY, smB, smF, and smZ. The execution point of each mutant was determined and the growing pattern of each mutant at the restrictive temperature was observed under the microscope. Growth of mutant was arrested near at the execution point. From genetic analysis, each temperature-sensitive mutants was thought to have a single recessive gene. The genes of smK, smY, smB, smF, and smZ are linked to the chromosome VII, IV, VIII, I, and VI, respectively. It can be concluded that the genes controlling the differentiation are widely dispersed in the genome. From the results of mutant, smK, it is considered that a single gene can affect a function (functions) which act(s) at two different steps during differentiation.

  • PDF

Magnetic and Temperature-Sensitive Composite Polymer Particles and Adsorption Behavior of Emulsifiers and Trypsin

  • Ahmad, Hasan;Rahman, M.Abdur;Miah, M.A. Jalil;Tauer, Klaus
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.637-643
    • /
    • 2008
  • A combination of magnetic and temperature-responsive properties in the same polymer composites is expected to increase their potential applications in the biomedical field. Accordingly, micron-sized magnetite/polystyrene/poly(2-dimethylaminoethyl methacrylate-ethyleneglycol dimethacrylate), which are abbreviated as $Fe_3O_4$/PS/P (DM-EGDM) composite polymer particles, were prepared by the seeded copolymerization of DM and EGDM in the presence of magnetite/polystyrene ($Fe_3O_4$/PS) particles. $Fe_3O_4$/PS/P(DM-EGDM) composite particles with magnetic properties showed a temperature-sensitive phase transition at approximately $31^{\circ}C$. The adsorption behavior of the low molecular weight emulsifiers and trypsin (TR) as biomolecules were examined on $Fe_3O_4$/PS/P(DM-EGDM) composite polymer particles at different temperatures. The native conformation of TR was followed by measuring the specific activity under various adsorption conditions. The activity of the adsorbed TR on composite polymer particles was higher than those of the tree TR and TR adsorbed on $Fe_3O_4$/PS particles.

A Study on the Safety of Organic Compound Type Thermal Fuse (유기물가용체형 온도퓨우즈의 안전성에 관한 연구)

  • 황명환;정영식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1996
  • To protect the damages or the disasters caused by overheating of industrial electric equipments or electric home appliances, a temperature sensitive thermal fuse is generally used in those equipments. Thermal fuses cutoff the current flow when the temperature of the electric equipments are abnormally overheated and over the certain temperature. Therefore thermal fuse is one of the most important elements in the sense of safety. Thermal fuses are classified into two types according to thermally sensitive materials, a low temperature melting alloy and an organic chemical compound. Domestic products of thermal fuses are now only with an organic chemical compound. Domestic products tested by using cutoff test and aging test etc. are satisfied UL specification. It's shown that the accuracy and the precision of the domestic products are as good as those of the overseas products obtained UL mark. However, some of domestic products show the reclosing problem which is mainly related the safety. This problem should be solved to make the reliable thermal fuses. In this paper, our Interest is to find out the causes of reclosing. In the comparison between thermally sensitive materials occurred reclosing and those occurred no reclosing, the test effects show that the characteristics of emitting heat and absorbing heat are different.

  • PDF

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.