• Title/Summary/Keyword: temperature superposition curve

Search Result 16, Processing Time 0.024 seconds

Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC) (폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성)

  • Kim Gyu-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

An Experimental study on the Viscoelastic Coefficient of Polystyrene (폴리스티렌의 점탄성 계수에 관한 실험적 연구)

  • Yoon, Kyung-Hwan;Yu, Bong-Kun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.751-754
    • /
    • 2000
  • Stress relaxation experiments were performed to obtain the material properties to be used in the linear viscoelastic study. Master curve of the modulus of polystyrene were obtained by using the time-temperature superposition principle. Because Shyu and Tobolsky's tensile relaxation modulus master curve or Polystyrene material showed very large difference, in-house data were required to calculate the residual stresses in injection-molded products more accurately. Our own experimental data showed that the master curve Shyu's data should be shifted about two orders in material time coordinate.

  • PDF

A Study on Creep Behavior of Geosynthetics Considering Effect of Temperature and Confining Stress (온도 및 구속응력을 고려한 토목섬유의 크리프거동에 관한 연구)

  • 방윤경;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.291-299
    • /
    • 2003
  • The effect of temperature and soil confining stress on geosyntheic creep behaviour was studied by performing the temperature dependent confined creep tests for HDPE geogrid and geomembrane specimen. The visco-elastic creep coefficients of the geosynthetics were evaluated by the test results and it was proposed that the simple expressions for the instantaneous and limit creep strain of geosynthetics was considered as a function of temperature and confining stress on geosynthetics. Based on the time-temperature superposition principle, a master curve has been drawn for extrapolating tensile creep strains to longer time intervals(1$\times$10 $^7$min.∼1$\times$10$^{10}$min.). By using this master curves, the shift factors which can be used in establishing master curve considering confining stress on geosynthetics were carried out. Each tests was performed during 8,000∼12,000 min., with temperature ranging between 5$^{\circ}C$ and 4$0^{\circ}C$ and with confining stress ranging between 0 t/$m^2$ and 9 t/$m^2$.

Prediction of the Rhelolgical of Soybean Curd during Storage by using WLF equation (저장중의 두부에 WLF식을 이용한 물성 변화 예측에 관하여)

  • Jang, Won-Young;Kim, Byung-Yong;Kim, Myoung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 1995
  • The changes in the rheological properties of soybean curd upon the various storage temperatures ($5{\sim}25^{\circ}C$) were measured by the stress-relaxation test and analysed by time-temperature superposition theory. As the storage temperature was lower, higher initial and equilibrium stress of soybean curd were observed. When the stress-relaxation curves were moved horizontally by using the shift-factor on the basis of reference temperature, the master curve was obtained. By applying master curve and shift-factor to the WLF (Williams-Landel-Ferry) equation, activation energy (30kcal/mol) was calculated and storage time at the specific temperature could be predicted, suggesting the equivalent shelf-life of soybean curd texture.

  • PDF

Dynamic Rheological Properties of Honeys at Low Temperatures as Affected by Moisture Content and Temperature

  • Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2008
  • Dynamic rheological properties of honey samples with 3 different moisture contents (17.2, 19.0, and 21.0%) were evaluated at various low temperatures (-15, -10, -5, and $0^{\circ}C$) using a controlled stress rheometer. The honey samples displayed a liquid-like behavior, with loss modulus (G") predominating over storage modulus (G') (G">>G'), showing the high dependence on frequency ($\omega$). The magnitudes of G' and G" decreased with an increase in temperature and water content while a predominant increase of G' was noticed at $-15^{\circ}C$. The time-temperature superposition (TTS) principle was applied to bring G" values for honeys at various temperatures together into a master curve. The G" over the temperature range of -15 to $0^{\circ}C$ obeyed the Arrhenius relationship with a high determination coefficient ($R^2=0.98-0.99$). Activation energy value (Ea=112.4 kJ/mol) of honey with a moisture content of 17.2% was higher than those (Ea=98.8-101.1 kJ/mol) of other honey samples with higher moisture contents.

Dynamic Rheological Properties of Honey with Invert Sugar by Small-Amplitude Oscillatory Measurements

  • Choi, Hye-Mi;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.610-614
    • /
    • 2007
  • Dynamic rheological properties of honeys with invert sugar at different mixing ratios of honey and invert sugar (10/0, 812, and 6/4 ratios) were evaluated at various low temperatures (-15, -10, -5, and $0^{\circ}C$) using a controlled stress rheometer for small-deformation oscillatory measurements. Honey-invert sugar mixtures displayed a liquid-like behavior, with loss modulus (G") predominating over storage modulus (G') (G">>G'), showing the high dependence on frequency (${\omega}$). The magnitudes of G' and G" increased with a decrease in temperature while their predominant increases were noticed at -10 and $-15^{\circ}C$. The greater tan ${\delta}$ values were found at higher temperature and ratio of honey to invert sugar, indicating that the honey samples at subzero temperatures become more viscous with increased ratio of honey to invert sugar and temperature. The time-temperature superposition (TTS) principle was used to bring G" values at various temperatures together into a single master curve. The TTS principle was suitable for the honey samples in the liquid-like state. The progress of viscous property (G") was also described well by the Arrhenius equation with high determination coefficients ($R^2=0.99$). Dynamic rheological properties of honey samples seem to be greatly influenced by the addition of invert sugar.

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong;Zhang, Chi;Yang, Zhigang;Zhao, Jijun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.569-575
    • /
    • 2017
  • One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.

Development of the Predicted Model for the HMA Dynamic Modulus by using the Impact Resonance Testing and Universal Testing Machine (충격공진실험과 만능재료시험기에 의한 아스팔트 공시체의 동탄성계수 예측 모델 개발)

  • Kim, Do Wan;Kim, Dong-Ho;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • PURPOSES : The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS : At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS : The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS : Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF