• Title/Summary/Keyword: temperature stable characteristics

Search Result 964, Processing Time 0.031 seconds

Exposure Characteristics for Chemical Substances and Work Environmental Management in the Semiconductor Assembly Process (반도체 조립공정의 화학물질 노출특성 및 작업환경관리)

  • Park, Seung-Hyun;Park, Hae Dong;Shin, In Jae
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.272-280
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate the characteristics of worker exposure to hazardous chemical substances and propose the direction of work environment management for protecting worker's health in the semiconductor assembly process. Methods: Four assembly lines at two semiconductor manufacturing companies were selected for this study. We investigated the types of chemicals that were used and generated during the assembly process, and evaluated the workers' exposure levels to hazardous chemicals such as benzene and formaldehyde and the current work environment management in the semiconductor assembly process. Results: Most of the chemicals used at the assembly process are complex mixtures with high molecular weight such as adhesives and epoxy molding compounds(EMCs). These complex mixtures are stable when they are used at room temperature. However workers can be exposed to volatile organic compounds(VOCs) such as benzene and formaldehyde when they are used at high temperature over $100^{\circ}C$. The concentration levels of benzene and formaldehyde in chip molding process were higher than other processes. The reason was that by-products were generated during the mold process due to thermal decomposition of EMC and machine cleaner at the process temperature($180^{\circ}C$). Conclusions: Most of the employees working at semiconductor assembly process are exposed directly or indirectly to various chemicals. Although the concentration levels are very lower than occupational exposure limits, workers can be exposed to carcinogens such as benzene and formaldehyde. Therefore, workers employed in the semiconductor assembly process should be informed of these exposure characteristics.

Thermal Hazard and Decomposition Characteristics of 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide (2-Chloro-N-(Cyano-2-thienyl methyl) acetamide의 열적 위험성 및 분해 특성)

  • Choi, Yi-Rac;Seo, Dong-Hyun;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.41-48
    • /
    • 2022
  • 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide (CCTA) is an intermediate used for synthesizing pesticides. It is stable at room temperature and pressure but can be decomposed when heat is accumulated. In this study, the decomposition characteristics were evaluated by measuring the weight change according to temperature using a Thermogravimetry analyzer(TGA), and the thermal decomposition characteristics were evaluated using Differential Scanning Calorimeter(DSC). The exothermic decomposition reaction occurred rapidly at about 91 ℃, and the activation energy determined by using Kissinger method, Kissinger-Akahira-Sunose(KAS) method, and Flynn-Wall-Ozawa(FWO) method were 162 kJ/mol, 149 kJ/mol and 139 kJ/mol, respectively. TD24, the temperature at which the maximum heating rate is reached within 24 hours, was evaluated as 52~55 ℃ using the estimated activation energy.

Printing of Polymer Dielectric via Optimal Blade Coating for Large-scale Low-Leakage Capacitors (대면적 저누설 커패시터를 위한 최적화 블레이드 코팅 기반 고분자 유전체 프린팅)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 2021
  • We demonstrated a polymer dielectric with low leakage characteristics through an optimal blade coating method for low-cost and large-scale fabrication of metal-insulator-metal (MIM) capacitors. Cross-linked poly(4-vinylphenol) (C-PVP), which is a typically used polymer dielectric, was coated on a 10 × 10 cm indium-tin-oxide (ITO) deposited glass substrate by changing the deposition temperature (TD) and coating velocity (VC) in the blade coating. During the blade coating, the thickness of the thin c-PVP varied depending on TD and VC owing to the 'Landau-Levich (LL) regime'. The c-PVP-dielectric-based MIM capacitor fabricated in this study showed the lowest leakage current characteristics (10-6 A/㎠ at 1.2 MV/㎠, annealing at 200 ℃) and uniform electrical characteristics when TD was 30 ℃ and VC was 5 mm/s. In addition, at TD = 30 ℃, stable leakage characteristics were confirmed when a different electric field was applied. These results are expected to positively contribute to applications with next-generation electronic devices.

Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process (전해환원 공정에서의 사용후핵연료 분배 특성 분석)

  • Park, Byung Heung;Lee, Chul Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.696-701
    • /
    • 2012
  • Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Electrical Characteristics of SiO2/4H-SiC Metal-oxide-semiconductor Capacitors with Low-temperature Atomic Layer Deposited SiO2

  • Jo, Yoo Jin;Moon, Jeong Hyun;Seok, Ogyun;Bahng, Wook;Park, Tae Joo;Ha, Min-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.265-270
    • /
    • 2017
  • 4H-SiC has attracted attention for high-power and high-temperature metal-oxide-semiconductor field-effect transistors (MOSFETs) for industrial and automotive applications. The gate oxide in the 4H-SiC MOS system is important for switching operations. Above $1000^{\circ}C$, thermal oxidation initiates $SiO_2$ layer formation on SiC; this is one advantage of 4H-SiC compared with other wide band-gap materials. However, if post-deposition annealing is not applied, thermally grown $SiO_2$ on 4H-SiC is limited by high oxide charges due to carbon clusters at the $SiC/SiO_2$ interface and near-interface states in $SiO_2$; this can be resolved via low-temperature deposition. In this study, low-temperature $SiO_2$ deposition on a Si substrate was optimized for $SiO_2/4H-SiC$ MOS capacitor fabrication; oxide formation proceeded without the need for post-deposition annealing. The $SiO_2/4H-SiC$ MOS capacitor samples demonstrated stable capacitance-voltage (C-V) characteristics, low voltage hysteresis, and a high breakdown field. Optimization of the treatment process is expected to further decrease the effective oxide charge density.

Fatigue Crack Growth Characteristics of 9% Ni Steel Welded Joint for LNG Storage Tank at Low Temperature (LNG 저장탱크용 9% Ni강 용접부의 저온피로균열진전 특성)

  • Kim, Jae-Hoon;Shim, Kyue-Taek;Kim, Young-Kyun;Ahn, Byoung-Wook
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.45-50
    • /
    • 2010
  • The fatigue crack growth characteristics of base metal and weld joint of 9% Ni steel for LNG storage tank was carried out using CT specimen at room temperature and $-162^{\circ}C$. Fatigue crack growth rate of base and weld metals at RT and $-162^{\circ}C$ was coincided with a single line independent of the change of stress ratio and temperature. In the region of lower stress intensity factor range, fatigue crack growth rate at $-162^{\circ}C$ was slower than that at RT, and the slop of fatigue crack growth rate at $-162^{\circ}C$ increased sharply with propagating of fatigue crack, fatigue crack growth rate at RT and $-162^{\circ}C$ was intersected near the region of $2{\times}10-4\;mm$/cycle, and after the intersection region, fatigue crack growth rate at $-162^{\circ}C$ was faster than that at RT. The micro-fracture mechanism using SEM shows the ductile striation in the stable crack growth region. Also the defects of weld specimen after fatigue testing were detected using the A scan of ultrasonic apparatus.

Growth Characteristics of Turmeric (Curcuma longa L.) Germplasms and Storage Conditions of Seed Rhizomes (강황 수집자원의 생육특성 및 종근 저장 방법)

  • Lee, Jeong Hoon;Oh, Myeong Won;Jang, Hyun Do;Lee, Yun Ji;Jeong, Jin Tae;Park, Chun Geon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2020
  • Background: Curcuma longa L., a perennial crop originating from tropical and subtropical region, including India, is noted for its important medicinal properties. However, C. longa plants are unable to endure the winter season in Korea, and its rhizomes were invariably succumb to fungal infection when stored in polyvinyl bags. In this study, we accordingly sought to develop a C. longa variety capable of producing high rhizome yields and to identify stable conditions under which rhizomes can be stored in Korea. Methods and Results: We evaluated the agronomic characteristics of nine C. longa germplasms and examined the effects of storing rhizomes at different temperatures (4℃ to 24℃) in paper bags or plastic baskets. We found that the finger rhizomes was higher in CUR02, CUR03, and CUR06 germplasms than those of other groups. Furthermore, in terms of yield per 1 ㎡, the weights of the finger rhizomes and tuberous roots were significantly higher in CUR09 (3.4 ㎏/㎡) and CUR04 (678.7 g/㎡) than those of other groups. Therefore, we consider that these C. longa germplasms might be useful as breeding material. Although the fresh weights of the rhizomes were slightly reduced when stored in paper bags and a plastic baskets at 10℃ to 15℃, there was no evidence of fungal decomposition or sprouting, which is observed when using a conventional storage method. Conclusions: The results of this study indicate that the selected C. longa germplasms can provide a useful source of breeding material for the development of high yielding varieties and that a temperature ranging from 10℃ to 15℃ and the use of paper bags or plastic baskets provide stable post-harvest storage conditions for C. longa rhizomes.

Characteristics of Co-deposition for Bi-superconductor Thin Film Using Ion Beam Sputtering Method (IBS 법으로 제작한 Bi 계 초전도 박막의 동시 증착 특성)

  • 박용필;이준웅
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.425-433
    • /
    • 1997
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 82$0^{\circ}C$ and the highly condensed ozone gas pressure(PO$_3$) in vacuum chamber was varied between 2.0$\times$10$^{-6}$ and 2.3$\times$10$^{-5}$ Torr. Bi 2212 phase appeared in the temperature range of 750 and 795$^{\circ}C$ and single phase of Bi 2201 existed in the lower region than 785$^{\circ}C$. Whereas, PO$_3$dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with T$_{c}$(onset) of about 90 K and T$_{c}$(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as CaCuO$_2$was observed in all of the obtained films.lms.

  • PDF

The Effects of the Annealing on the Reflow Property of Cu Thin Film (열처리에 따른 구리박막의 리플로우 특성)

  • Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.28-36
    • /
    • 2005
  • In this study, the reflow characteristics of copper thin films which is expected to be used as interconnection materials in the next generation semiconductor devices were investigated. Cu thin films were deposited on the TaN diffusion barrier by metal organic chemical vapor deposition (MOCVD) and annealed at the temperature between 250℃ and 550℃ in various ambient gases. When the Cu thin films were annealed in the hydrogen ambience compared with oxygen ambience, sheet resistance of Cu thin films decreased and the breakdown of TaN diffusion barrier was not occurred and a stable Cu/TaN/Si structure was formed at the annealing temperature of 450℃. In addition, reflow properties of Cu thin films could be enhanced in H₂ ambient. With Cu reflow process, we could fill the trench patterns of 0.16~0.24 11m with aspect ratio of 4.17~6.25 at the annealing temperature of 450℃ in hydrogen ambience. It is expected that Cu reflow process will be applied to fill the deep pattern with ultra fine structure in metallization.