• Title/Summary/Keyword: temperature rising rate

Search Result 138, Processing Time 0.024 seconds

Study on Temperature Distribution in Cold Storage of Korean Garlic in Wire Mesh Pallet Container Using CFD Analysis (CFD 해석을 이용한 철망 파렛트 컨테이너 적입 마늘의 저온 저장고내 온도 분포 연구)

  • Dong-Soo Choi;Yong-Hoon Kim;Jin-Se Kim;Chun-Wan Park;Hyun-Mo Jung;Jong-Min Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.195-201
    • /
    • 2023
  • Garlic (Allium sativum)is a major crop in most Asian countries, and its consumption in Asia-Pacific countries exceeds 90% of the global consumption. It contains beneficial ingredients and numerous essential nutrients, such as manganese, vitamin B6, and vitamin B1. Garlic demand is rising not only in Asian countries but also around the world. Particularly, garlic demand has been steadily increasing in European countries, such as Spain, France, Italy, and the American continent. In South Korea, 331,671 tons and 387,671 tons of garlic was produced in 2018 and 2019, respectively, making the country the fifth ranking garlic producer in the world, and the production has been increasing every year. In this study, the study on temperature distribution in cold storage of Korean garlic in folding wire mesh pallet container using CFD (Computational Fluid Dynamics) analysis was performed and Computations were based a commercial simulation software (ANSYS Workbenh Ver. 18.0). Considering the respiration heat of garlic, the decreasing rate of temperature in the area in contact with the cold air was fast due to the inflow of cold air inside, while the decreasing rate of temperature in the center of the pallet was very low. In order to maintain a uniform temperature distribution inside the agricultural product storage pallet in a low-temperature warehouse, it is considered desirable to install an air passageway to allow low-temperature air to flow into the wire mesh pallet.

Flood Forecasting for Pre-Release of Taech'ong Reservoir (대청댐 예비 방류를 위한 홍수 예보)

  • Lee, Jae-Hyeong;Sim, Myeong-Pil;Jeon, Il-Gwon
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 1993
  • A practical flood forecasting model(FFM) is suggested. The output of the model is the results which the initial condition of meteorological parameters and soil moisture are projected on the future. The physically based station model for rainfall forecasting(RF) and the storage function model for runoff prediction(RP) are adopted respectively. Input variables for FFM are air temperature, pressure, and dew-point temperature at the ground level and the flow at the rising limb(FRL). The constant parameters for FFM are average of optimum values which the past storm events have. Also loss rate of rainfall can predicted by FRL.

  • PDF

APPLICATION OF ACOUSTIC EMISSION FOR DIAGNOSIS OF QUENCH IN SUPER CONDUCTIVE MAGNET AT CRYOGENIC TEMPERATURE

  • Lee, Joon-Hyun;Lee, Min-Rae;Kwon, Young-Kin;Song, Bong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.160-165
    • /
    • 2007
  • It is well recently recognized that quench is one of the serious problems for the integrity of superconducting magnets, which is mainly attribute to the rapid temperature rising in the magnet due to some extrinsic factors such as conductor motion, crack initiation etc. In order to apply acoustic emission(AE) technique effectively to monitor and diagnose superconducting magnets, it is essential to identify the sources of acoustic emission. In this paper, an acoustic emission technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. For these purposes special attention was paid to detect AE signals associated with the quench of superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current.

  • PDF

The Application of Dump Combustor for Evaluation of DPF(Diesel Particulate Filter) System (DPF 성능 평가를 위한 Dump Combustor의 활용)

  • Nam, Youn-Woo;Lee, Won-Nam;Oh, Kwang-Chul;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.98-103
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas compostion and flow rate of exhaust gas are important parameters in DPF evaluation, especially regeneration process. Engine dynamometer and degment tester are generally used in DPF evaluation so far. But these test method couldn't reveal the effect of various parameters on real DPF, such as O2 concentration, amount of soot and exhaust gas temperature. This research has studied the possibility using dump combustor that used to take an approach lean premixed combustion in gas turbine for a DPF power and optimized. It is possible that utilize the system as DOC (Diesel Oxidation Catalyst) and SCR(Selective Catalytic Reduction) assessments test as well as DPF evaluation

  • PDF

Gamma Dosimetry and Clinical Application with $Al_2O_3$ Thermoluminescent Dosimeter ($Al_2O_3$ 열형광(熱螢光) 특성(特性)을 이용(利用)한 감마선(線)의 측정(測定) 및 임상응용(臨床應用))

  • Chu, Seong-Sil;Park, Chang-Yoon
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 1984
  • The properties of $Al_2O_3$ thermoluminescent phosphor have been observed to apply for gamma dosimetry in vivo. Glow peaks at 380, 420, 490 kelvin temperature with emission in the blue region have been detected and calculated as 1.4 eV the activation energy by means of heat response rising time method. Sensitization and supralinearity in $Al_2O_3$ phosphor could be consistently explained by the deep trap model. Studies of the thermoluminescence growth rate with gamma ray exposure showed linearly to $10^4$ Roentgen and then supralinear rate detected 1.2 power of exposure dose sensitization of $Al_2O_3$ is described five times more than TLD-100 and the fading time is shorter and then tried to apply for gamma dosimetry in vivo.

  • PDF

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding

  • Kim, Hyung Soo;Byun, Jong Min;Suk, Myung Jin;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.

High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen

  • Steinbruck, Martin;Prestel, Stefen;Gerhards, Uta
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • Potential air ingress scenarios during accidents in nuclear reactors or spent fuel pools have raised the question of the influence of air, especially of nitrogen, on the oxidation of zirconium alloys, which are used as fuel cladding tubes and other structure materials. In this context, the reaction of zirconium with nitrogen-containing atmospheres and the formation of zirconium nitride play an important role in understanding the oxidation mechanism. This article presents the results of analysis of the interaction of the oxygen-preloaded niobium-bearing alloy $M5^{(R)}$ with nitrogen over a wide range of temperatures ($800-1400^{\circ}C$) and oxygen contents in the metal alloy (1-7 wt.%). A strongly increasing nitriding rate with rising oxygen content in the metal was found. The highest reaction rates were measured for the saturated ${\alpha}-Zr(O)$, as it exists at the metal-oxide interface, at $1300^{\circ}C$. The temperature maximum of the reaction rate was approximately 100 K higher than for Zircaloy-4, already investigated in a previous study. The article presents results of thermogravimetric experiments as well as posttest examinations by optical microscopy, scanning electron microscopy (SEM), and microprobe elemental analyses. Furthermore, a comparison with results obtained with Zircaloy-4 will be made.

High Performance of Temperature Gradient Chamber Newly Built for Studying Global Warming Effect on a Plant Population

  • Lee, Jae-Seok;Tetsuyuki Usami;Takehisa Oikawa;Lee, Ho-Joon
    • The Korean Journal of Ecology
    • /
    • v.23 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • To study the effect of global warming on the growth of plants and plant populations throughout their life cycle under a field-like condition, we constructed a Temperature Gradient Chamber (TGC) in Tsukuba, Japan. The chamber had slender shape : 30 m long. 3 m wide, and 2.5 m high. That satisfactory performance was confirmed by a test throughout all seasons in 1998: the projected global warming condition in the near future was simulated. That is, independent of a great daily or seasonal change in ambient meteorological conditions, air temperatures at the air outlet were warmed 5$^{\circ}C$ higher than those at the ambient (the annual mean was 14.3$^{\circ}C$) with precision of ${\pm}$0.2$^{\circ}C$ (the annual means were 19.2$^{\circ}C$) with a rising rate of approximately 1$^{\circ}C$ every 5 m. This chamber will enable us to study the effects of global warming on growth of plants and plant populations because their abilities to control air temperature are excellent. TGC is expected that it would be utilized for studying the effect of global warming on plant growth under natural weather conditions.

  • PDF

Degradation Mechanism of the ZnO-Varistor Fabricated with the content of a 3-Composition Seed grain (3-성분 종입자법으로 제조된 ZnO-Varistor의 열화기구)

  • 장경욱;박춘배;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.97-100
    • /
    • 1992
  • The Degradation mechanism of the ZnO-varistor fabricated with the content of a 3-Composition seed grain is discussed using the method of Thermally Stimulated Current (TSC). The spectra of TSC is measured in the temperature range of -130~270$^{\circ}C$ with a various forming electric fields E$\sub$f/, temperature T$\sub$f/ time tf, and a various rising rate of temperature. It is observed that there are appeared the peaks of ${\alpha}$, ${\alpha}$$_2$, ${\beta}$ and ${\gamma}$from high temperature in a TSC spectrum. It seems that ${\alpha}$$_1$ peak is due to thermal depolarization of donor ions forming the space charge in the depletion layer, and ${\alpha}$$_2$peak is due to the detrapping of trapped electrons in deep trap level of intergranular layer, and ${\beta}$ peak is due to the thermal exciting of carrier existing in the donor level of grain itself, and ${\gamma}$ peak is due to the thermal exciting of trapped carrier in all shallow trap site randomly distributed in the inner of sample and/or a intrinsic impurity existing in it.

  • PDF

Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts (젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구)

  • Eom, Se Yeon;Lee, Hyeong Il;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. $234^{\circ}C$, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. $271^{\circ}C$, respectively. The kinetic parameters were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant $k_0$ increased. But in the case of PO catalyst, $k_0$ did hardly depend upon its amount, and showed us similar reaction rate constants.