Browse > Article
http://dx.doi.org/10.4150/KPMI.2014.21.6.407

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding  

Kim, Hyung Soo (Department of Materials Science and Engineering, Hanyang University)
Byun, Jong Min (Department of Materials Science and Engineering, Hanyang University)
Suk, Myung Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.21, no.6, 2014 , pp. 407-414 More about this Journal
Abstract
The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.
Keywords
Powder injection molding (PIM); Translucent alumina; Carbon dioxide supercritical fluid; Debinding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Y. Roh, J. Kwon, C. S. Lee and J. S. Choi: Ceram. Int., 37 (2011) 321.   DOI   ScienceOn
2 D. S. Kim, J. H. Lee, R. J. Sung, S. W. Kim, H. S. Kim and J. S. Park: J. Eur. Ceram. Soc., 27 (2007) 3629.   DOI   ScienceOn
3 T. Chartier, M. Ferrato and J. B. Baumard: J. Eur. Ceram. Soc., 15 (1995) 899.   DOI   ScienceOn
4 O. Kajimoto: Chem. Rev., 99 (1999) 355.   DOI   ScienceOn
5 Y. Sato, T. Takikawa, S. Takishima and H. Masuoka: J. Supercrit. Fluids, 19 (2001) 187.   DOI   ScienceOn
6 S. C. Tucker: Chem. Rev., 99 (1999) 391.   DOI   ScienceOn
7 M. D. Lugue de Castro and M. Valcarcel M. T. Tena: Spinger-verlag, 31 (1994) 150.
8 P. G. Shewmon: Diffusion in Solids, McGraw-Hill, 18 (1963).
9 M. L. Lee and K. E. Markides: Chromatography conf. Inc. Provo, UT (1990).
10 A. Ferri, M. Banchero, L. Manna and S. Sicardi: J. of Supercrit. Fluids, 31 (2004) 133.   DOI   ScienceOn
11 Q. Li, Z. Zhang and C. Zhong: J. of Chem. Eng. Data, 48 (2003) 61.   DOI   ScienceOn
12 D. E. Knox: Int. Res. J. Pure Appl. Chem., 46 (2011) 1255.
13 E. Nishikawa, N. Wakao and N. Nakashima: J. of Supercrit. Fluids, 4 (1991) 265.   DOI
14 D. E. Knox: Int. Res. J. Pure. Appl. Chem., 46 (2011) 1255.
15 S. Angus, A. Armstrong and K. M. de Reuk: Pergamon, Oxford (1976) 3.
16 J. Crank: Oxford University Press, Oxford, 44 (1977).
17 T. Shimizu and S. Mochizuki: Mechanical Engineering Laboratory, 51 (1997) 41.
18 M. Rei, E. C. Milke, R. M. Gomes, L. Schaeffer and J. K. Souza: Mater. Lett., 52 (2002) 360.   DOI   ScienceOn
19 Y. H. Kim, J. S. Lim, Y. W. Lee and S. N. Kim: J. Korean Powder Metall. Inst., 8 (2001) 91.