• Title/Summary/Keyword: temperature reducing effect

Search Result 669, Processing Time 0.034 seconds

The Effect of Alkali Metal Ions (Na, K) on NH3-SCR Response of V/W/TiO2 (알칼리 금속 이온(Na, K)이 V/W/TiO2의 NH3-SCR 반응인자에 미치는 영향)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.560-567
    • /
    • 2020
  • In this study, we investigated that the effect of alkali metals [Na(Sodium) and K(Potassium)], known as representative deactivating substances among exhaust gases of various industrial processes, on the NH3-SCR (selective catalytic reduction) reaction of V/W/TiO2 catalysts. NO, NH3-TPD (temperature programmed desorption), DRIFT (diffuse reflectance infrared fourier transform spectroscopy analysis), and H2-TPR analysis were performed to determine the cause of the decrease in activity. As a result, each alkali metal acts as a catalyst poisoning, reducing the amount of NH3 adsorption, and Na and K reduce the SCR reaction by reducing the L and B acid points that contribute to the reaction activity of the catalyst. Through the H2-TPR analysis, the alkali metal is considered to be the cause of the decrease in activity because the reduction temperature rises to a high temperature by affecting the reduction temperature of V-O-V (bridge oxygen bond) and V=O (terminal bond).

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time

  • Haque, Md. Azizul;Barman, Dhirendra Nath;Kang, Tae Ho;Kim, Min Keun;Kim, Jungho;Kim, Hoon;Yun, Han Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1681-1691
    • /
    • 2012
  • This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

Effect of Soaking Time and Steeping Temperature on Biochemical Properties and γ-Aminobutyric Acid (GABA) Content of Germinated Wheat and Barley

  • Singkhornart, Sasathorn;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • The objective of this research was to investigate the effects of soaking time (6, 12 and 24 hr) and steeping temperature (25, 30 and $35^{\circ}C$) on germination time, germination percentage and weight loss of wheat and barley. Changes in chemical composition (such as protein, fat, and ash), reducing sugar content, enzyme activity and pasting profile and GABA ($\gamma$-animobutyric acid) content of germinated wheat and barley were also evaluated. The results clearly suggest that the short soaking time and lower steeping temperature significantly decreased germination time and weight loss, while germination percentage increased. Regarding the chemical composition, the protein content of wheat and barley was slightly increased after germination but there was no significant difference in content of crude fat and ash of both germinated cereals. The reducing sugar content of both germinated cereals decreased as the steeping temperature increased from $25^{\circ}C$ to $35^{\circ}C$. Increasing soaking time and steeping temperature led to increased amylase activity, and also corresponded to reduced paste viscosity. The highest GABA content that occurred with soaking times of 6 and 12 hr and a steeping temperature of $35^{\circ}C$ was 1,467.74 and 1,474.70 ${\mu}g/g$ for germinated wheat and 2,108.13 and 1,691.85 ${\mu}g/g$ for germinated barley. This study indicated that the optimum germination process for wheat and barley is a low steeping temperature and a short soaking time.

Electrical Properies with Ca Contents of the (Sr$_{1-x}.Ca_x)$TiO$_3$Ceramic ((Sr$_{1-x}.Ca_x)$TiO$_3$세라믹의 Ca변화량얘 따른 전기적인 특성)

  • 김진사;정일형;신철기;김충혁;최운식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.318-322
    • /
    • 1997
  • The (Sr$_{l-x}$.Ca$_{x}$)TiO$_3$(0.05$\leq$x$\leq$0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[$^{\circ}C$] in a reducing atmosphere($N_2$gas). After being fired in a reducing atmosphere, metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100[$^{\circ}C$] for 2 hours and cooled to room temperature. The grain boundary was composed of the continuous insulating layers. The capacitance changes slowly and almost linearly in the temperature region of -30~+85[$^{\circ}C$]. The capacitance characteristics appears a stable value within $\pm$10[%]. The conduction mechanism of the specimens observed in the temperature range of 25~125[$^{\circ}C$], and is divined into three regions haying different mechanism as the current increased: the region I below 230[V/cm] shows the ohmic conduction. The region II can be explained by the Poole-Frenkel emission theory, and the region III is dominated by the tunneling effect.ect.

  • PDF

Effect of Progressive Muscle Relaxation using Biofeedback on Perceived Stress, Stress Response, Immune Response and Climacteric Symptoms of Middle-Aged Women (바이오피드백을 이용한 점진적 근육이완이 중년여성의 지각된 스트레스, 스트레스반응, 면역반응 및 갱년기 증상에 미치는 효과)

  • 정인숙
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.2
    • /
    • pp.213-224
    • /
    • 2004
  • Purpose: This study was aimed to evaluate the effect of progressive muscle relaxation training using biofeedback on perceived stress, stress response, immune response and climacteric symptoms, Method: This was a crossover, pre-post test design, The study subjects are 36 middle-aged women who were selected at 2 public health centers, The independent variable was Biofeedback training for 4 weeks, twice a week and home training for 4 weeks, Dependent variables were perceived stress, stress response, immune response, and climacteric symptoms measured with Hildtch's scale (1996), Result: Progressive muscle relaxation training using biofeedback was not effective in reducing perceived stress, but it was shown to be effective in reducing physiological stress responses such as pulse rate and EMG, Though blood pressure and skin conductance were repeatedly down, and skin temperature slowly increased, there were no statistically significant differences. Progressive muscle relaxation training using biofeedback was not effective in reducing serum cortisol, enhancing immune responses, or decreasing climacteric symptoms. Conclusion: The findings point to a pressing need for further, well-controlled and designed research with consideration in selection of subjects and instruments, frequency of measurements, the sampling method, and intervention modalities.

Performance Analysis of Simultaneous Heating & Cooling Water Making System(I)-Simulation (냉.온열 동시 제조시스템의 성능분석(I)-Simulation)

  • Park, Seong-Ryong;Park, Jun-Tack;An, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.266-271
    • /
    • 2001
  • In this study, the performance of the simultaneous heating & cooling water making system using R134a was investigated by simulation. The most important effect upon heating COP was intermediate pressure depending on input water temperature. With the input water temperature of $10^{\circ}C\;and\;20^{\circ}C$, optimum intermediate pressure were 923 and 1040kPa, respectively. At that optimum intermediate pressure, the maximum heating COP of the system operated between $0^{\circ}C$ evaporating temperature and $70^{\circ}C$ condensing temperature were 4.15 and 3.83. With installation of the subcoolers in high or low pressure section, the system COP was increased by reducing the refrigerant mass flow rate. Under the optimum pressure and $10^{\circ}C$ input water temperature, it was found that heating COP was maximized when the low-subcooler and high-subcooler capacity rate were taken by 14% and 13%, respectively.

  • PDF

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

An Experimental Study on the Characteristics of Metal Temperature and Heat Rejection to Coolant of Gasoline Engine (가솔린엔진의 금속면온도 및 냉각수로의 전열 특성에 관한 실험적 연구)

  • 오창석;유택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.35-41
    • /
    • 2001
  • In recent applications, map controlled thermostat has been adapted to optimize engine cooling system and vehicle cooling system. First of all, this strategy is focused on improving fuel consumption rate and reducing emissions, especially unburned hydrocarbon. The object can be obtained through controlling engine metal temperature by varying engine coolant temperature with engine load and speed. To achieve this goal, it is necessary to understand the characteristics of engine metal temperature and heat rejection rate to coolant. From the results of tested engines, it is obvious that fuel consumption rate has more dominant effect on engine metal temperatures than the corresponding engine power does. Also, Re-Nu relation which shows heat rejection rate to coolant in function of air-fuel mixture and engine specifications has been studied. Also, the empirical Re-Nu relation at full loaded engine was developed.

  • PDF

Analysis of Regional Effects of the Seasonal Management Policy on Coal-fired Power Plant Using Difference-in-difference Method (이중차분법을 이용한 석탄화력발전소에 대한 미세먼지 계절관리제의 지역별 효과 분석)

  • Kang, Heecha
    • Environmental and Resource Economics Review
    • /
    • v.31 no.3
    • /
    • pp.343-365
    • /
    • 2022
  • This paper tries to identify the effect of reducing PM2.5 concentration of the First Seasonal Management Policy implemented by Korean government by using statistical method. In particular, this paper tests the hypothesis that this policy effect may differ by region (west-coast, south-coast, and east-coast). To this end, this paper analyzed only pure policy effects by removing temporal abnormalities such as COVID-19, warm winter temperature during the policy implementation period (December 2019 to March 2020) by using the difference-in-difference method (DID). As a result of the analysis, this policy had the effect of reducing PM2.5, but the effect is not homogenous by region. In particular, PM2.5 reducing effect is the largest in west-coast region and south-coast region folllows, but its effect is not statistically significant in the east-cost region. In conclusion, this paper drew implications that the current Seasonal mamangement policy which is implemented regardless of the regional difference needs to be changed.

The Effect of Urban Road Vegetation on a Decrease of Road Surface Temperature (도시도로 녹지의 도로 표면온도 져감 효과에 관한 연구)

  • Cha, Hye-Jin;Lim, Ji-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.107-116
    • /
    • 2011
  • One of the major factors which increase urban temperature is roads. This paper is aimed to investigate the effect of urban roadside vegetation on the road surface temperature. For this, surface temperature was measured at 18 spots using the thermal imaging camera in terms of road components including use of roadside land use, roadway, sidewalk, roadside vegetation and vegetation median barrier. The size of the roadside vegetation and related urban road characteristics were also measured. In terms of the effect of roadside vegetation on a decrease in road surface temperature, the roadside land use as a green area or open space was the highest, followed by the size of vegetation median barrier and the size of roadside vegetation. Besides road surroundings, an increase in the green zone such as roadside vegetation and median strip vegetation has a significant impact on lowering road surface temperature. Therefore, a good solution for reducing urban heat island effects would be to increase the area of roadside vegetation and green areas along roads.