• 제목/요약/키워드: temperature properties

검색결과 18,767건 처리시간 0.047초

냉각평판에 형성된 서리층의 물성치 (Properties of the Frost Layer Formed on a Cold Flat Surface)

  • 김성곤;양동근;이관수
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.374-380
    • /
    • 2003
  • This paper proposes dimensionless correlations predicting properties of the frost layer formed on a cold flat surface. Experiments are carried out to obtain the correlations with various environmental parameters such as air temperature, air velocity, absolute humidity, and cooling plate temperature. As a result, the frost properties (frost layer thickness, density, surface temperature, thermal conductivity) are correlated as a function of Reynolds number, Fourier number, absolute humidity and non-dimensional temperature by using a dimensional analysis. The correlations agree well with the previous and our experimental data within a maximum error of 10%, and are used to predict the frost properties in the following ranges: Reynolds number of 20216 to 53763, Fourier number of 0.1962 to 2.5128, absolute humidity of 3.22 to 8.47, and non-dimensional temperature of 0.125 to 0.5.

스퍼터링 질화탄소 박막의 트라이볼로지 및 전기적 특성의 기판 온도 영향 (The Effect of Substrate Temperature on Tribological and Electrical Properties of Sputtered Carbon Nitride Thin Film)

  • 박찬일
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.33-38
    • /
    • 2021
  • Using facing target magnetron sputtering (FTMS) with a graphite target source, carbon nitride thin films were deposited on silicon and glass substrates at different substrate temperatures to confirm the tribological, electrical, and structural properties of thin films. The substrate temperatures were room temperature, 150℃, and 300℃. The tribology and electrical properties of the carbon nitride thin films were measured as the substrate temperature increased, and a study on the relation between these results and structural properties was conducted. The results show that the increase in the substrate temperature during the fabrication of the carbon nitride thin films increased the hardness and elastic modulus values, the critical load value was increased, and the residual stress value was reduced. Moreover, the increase in the substrate temperature during thin-film deposition was attributed to the improvement in the electrical properties of carbon nitride thin film.

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

Effect of Hot-compaction Temperature on the Magnetic Properties of Anisotropic Nanocrystalline Magnets

  • Li, W.;Wang, H.J.;Lin, M.;Lai, B.;Li, D.;Pan, W.
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.300-303
    • /
    • 2011
  • The effect of the hot-compaction temperature on the microstructure and magnetic properties of anisotropic nanocrystalline magnets was investigated. The hot-compaction temperature was found to impact both the magnetic properties and the microstructure of die-upset magnets. The remanence of the isotropic precursor increases slightly with the improved hot-compaction temperature, and the grains start to grow on the flake boundary at higher hot-compaction temperatures. After hot deformation, it was found that the change in the magnetic properties was the inverse of that observed with the hot-compaction temperature. Microstructural investigation showed that die-upset magnets inherit the microstructural characteristics of their precursor. For the die-upset magnets, hot pressed at low temperature, scarcely any abnormal grain growth on the flake boundary can be seen. For those hot pressed at higher temperatures, however, layers with large equiaxed grains could be observed, which accounted for the poor alignment during the hot deformation, and thus the poor magnetic properties.

Effects of Heating Time and Temperature on Functional Properties of Proteins of Yellow Mealworm Larvae (Tenebrio molitor L.)

  • Lee, Ha-Jung;Kim, Ji-Han;Ji, Da-Som;Lee, Chi-Ho
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.296-308
    • /
    • 2019
  • Although the yellow mealworm (Tenebrio molitor L.) is a promising alternative protein source, the effects of processing conditions on functional properties are unclear. In this study, a protein extract of yellow mealworm larvae (PEYM) was subjected to different heat temperature ($55^{\circ}C$, $75^{\circ}C$, and $95^{\circ}C$) with different time (20, 40, and 60 min) to evaluate the functional properties and protein oxidation. Different heat temperature treatment significantly affected the exposure of surface hydrophobicity of the proteins and protein molecule aggregation, which reached maximum levels at $95^{\circ}C$ for 60 min. Protein oxidation was inversely proportional to the temperature. Both the highest carbonyl value (1.49 nmol/mg protein) and lowest thiol value (22.94 nmol/mg protein) were observed at $95^{\circ}C$ for 60 min. The heating time-temperature interaction affected several functional properties, including solubility, emulsifying potential, and gel strength (GS). Solubility decreased near the isoelectric point (pH 5 to 6). As the temperature and heating time increased, emulsifying properties decreased and GS increased. The oil absorption capacity and foaming properties decreased and the water absorption capacity increased. These results confirmed that PEYM is a suitable source of proteins for processing and applications in the food industry.

열교환기 핀에서의 서리층 물성치에 대한 실험 상관식 (Empirical Correlations of Frost Properties on the Fin of a Heat Exchanger)

  • 김경민;이관수
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.629-635
    • /
    • 2009
  • In this study, fin surface temperature and frost properties, i.e., frost thickness and frost surface temperature on a heat exchanger, were experimentally analyzed with different fin thicknesses, fin sizes and thermal conductivities of fin. As a result, it is found that fin thickness and thermal conductivity of fin should be considered in order to design an efficient heat exchanger fin. Correlations of dimensionless average frost properties were proposed as functions of dimensionless air temperature, dimensionless fin base temperature, dimensionless fin thickness, absolute air humidity, Reynolds number and Fourier number. The correlations predicted well the average frost thickness with a maximum error of 10.5% and frost surface temperature with a maximum difference of $0.89^{\circ}C$, respectively.

질화규소 재료의 고온 유전물성 평가 (High Temperature Dielectric Properties of Silicon Nitride Materials)

  • 최두현
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.114-119
    • /
    • 2007
  • Dielectric properties of quartz glass and $Si_3N_4$ are investigated using the waveguide method from room temperature to $800^{\circ}C$. For the case of dielectric constant, $Si_3N_4$ showed similar increase with quartz glass up to $300^{\circ}C$, but less increase from $300^{\circ}C$ to $800^{\circ}C$. For the case of loss tangent, those showed gradual increase with temperature except of some temperature points. The loss tangent of $Si_3N_4$ and quartz glass increased up to 18.2% and 12.5% respectively. Through these researches, high temperature dielectric properties of silicon nitride materials are characterized.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

굵은골재의 용적이 초고강도 콘크리트의 고온역학적특성에 미치는 영향 (Effect of the Coarse Aggregate Volume by High Temperature Mechanical Properties of Ultra High Strength Concrete)

  • 황의철;김규용;최경철;윤민호;이보경;김정현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.67-68
    • /
    • 2015
  • Recently, usage of ultra-high strengh concrete(UHSC) have been increased. Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Therefore, this study evaluated effect of the coarse Aggregate volume by high temperature mechanical properties of UHSC. Residual mechanical properties are evaluated under fine aggregate ratio 40,60% and 500℃ temperature on UHSC of W/B 15, 20%. As result, residual mechanical properties of UHSC are high by lower coarse aggregate volume.

  • PDF

Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors

  • Goh, Yumin;Kim, Baek-Hyun;Bae, Hyunjeong;Kwon, Do-Kyun
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.178-183
    • /
    • 2016
  • Ferroelectric relaxor ceramics with $BaTiO_3-NaNbO_3-Bi(Mg_{1/2}Ti_{1/2})O_3$ ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.