• 제목/요약/키워드: temperature gradient solution

검색결과 108건 처리시간 0.022초

Effect of temperature gradient on track-bridge interaction

  • Kumar, Rakesh;Upadhyay, Akhil
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2012
  • Considerable longitudinal rail forces and displacements may develop in continuous welded rail (CWR) track on long-span bridges due to temperature variations. The track stability may be disturbed due to excessive relative displacements between the sleepers and ballast bed and the accompanied reduction in frictional resistance. For high-speed tracks, however, solving these problems by installing rail expansion devices in the track is not an attractive solution as these devices may cause a local disturbance of the vertical track stiffness and track geometry which will require intensive maintenance. With reference to temperature, two actions are considered by the bridge loading standards, the uniform variation in the rail and deck temperature and the temperature gradient in deck. Generally, the effect of temperature gradient has been disregarded in the interaction analysis. This paper mainly deals with the effect of temperature gradient on the track-bridge interaction with respect to the support reaction, rail stresses and stability. The study presented in this paper was not mentioned in the related codes so far.

Effect of Hot-zone Aperture on the Growth Behavior of SiC Single Crystal Produced via Top-seeded Solution Growth Method

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Park, Sun-Young;Jeong, Seong-Min
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.589-595
    • /
    • 2019
  • The top-seeded solution growth (TSSG) method is an effective approach for the growth of high-quality SiC single crystals. In this method, the temperature gradient in the melt is the key factor determining the crystal growth rate and crystal quality. In this study, the effects of the aperture at the top of the hot-zone on the growth of the SiC single crystal obtained using the TSSG method were evaluated using multiphysics simulations. The temperature distribution and C concentration profile in the Si melt were taken into consideration. The simulation results showed that the adjustment of the aperture at the top of the hot-zone and the temperature gradient in the melt could be finely controlled. The surface morphology, crystal quality, and polytype stability of the grown SiC crystals were investigated using optical microscopy, high-resolution X-ray diffraction, and micro-Raman spectroscopy, respectively. The simulation and experimental results suggested that a small temperature gradient at the crystal-melt interface is suitable for growing high-quality SiC single crystals via the TSSG method.

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.

온도구배가 있는 필릿용접에서 초음파의 전파와 탐촉자의 위치 결정 (The determination of transducer location and ultrasonic wave propagation through temperature gradients in fillet are welding)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.109-117
    • /
    • 1997
  • The temperature gradient in weldment changes the transit time and distorts the direction of the ultrasound beam to the higher temperature regions due to the lower sound speed in the hotter regions of the weldment. This paper describes a ray-tracing method for calculating the effects of temperature gradients on ultrasonic propagation in fillet arc weldig. In the method, weldment is conceptually devided into a number of layers and the refraction and sound speed at each layer is calculated using the temperature which calculated from analytical solution. Calculating the time and location of echoes arrived from various interfaces around a molten weld pool determines the optimum location of ultrasonic transducers and the correct position of flaws.

  • PDF

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

온도기울기 농축(TGF) 향상을 위한 미세채널 형상 최적화 연구 (Geometric Optimization of a Microchannel for the Improvement of Temperature Gradient Focusing)

  • 한태헌;김선민
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.17-24
    • /
    • 2011
  • Temperature gradient focusing (TGF) of analytes via Joule heating is achieved when electric field is applied along a microchannel of varying width. The effect of varying width of the microchannel for the focusing performance of the device was numerically studied. The governing equations were implemented into a quasi-1D numerical model along a microchannel. The validity of the numerical model was verified by a comparison between numerical and experimental results. The distributions of temperature, velocity, and concentration along a microchannel were predicted by the numerical results. The narrower middle width and wider outside width of the channel having the fixed length contribute to improve the focusing performance of the device. However, too narrow middle width of the channel generates a higher temperature which can cause the problems including sample denaturation and buffer solution boiling. Therefore, the channel geometry should be optimized to prevent these problems. The optimal widths of the microchannel for the improvement on TGF were proposed and this model can be easily applied to lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

다공성 물질의 열 및 습도 전달에 관한 유한요소 해석 (Finite Element Analysis of Heat and Moisture Transfer in Porous Materials)

  • 이호림;금영탁;송창섭;오근호
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.158-167
    • /
    • 1999
  • Heat and moisture transfer associated with porous materials are investigated. The heat and moisture transfer in porous materials caused by the interaction of moisture gradient, temperature gradient, conduction, and evaporation are considered. The variations of temperature and moisture not only change the volume but also induce the hygro-thermal stress. The finite element formulation for solving the temperature and moisture transfer as well as the associated hygro-thermal stresses is developed. In order to verify the finite element formulation, the heat and moisture moving boundary problem in a half space and the hygro-thermo-mechanical problem in an infinite plate with a circular hole are analyzed. Temperature profile, moisture profile, and hygro-thermal stresses are compared with those of analytic solution and other investigator. Good agreements are examined

  • PDF

In_{1-x}Ga_xP$의 깊은 준위 특성 (Properties of deep levels in In_{1-x}Ga_xP$)

  • 김선태;문동찬
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권4호
    • /
    • pp.312-316
    • /
    • 1994
  • In this study, ln$_{1-x}$ Ga$_{x}$P alloy crystal which has different compositions were grown by the temperature gradient solution(TGS) method, and the properties of deep levels were measured in the temperature range of 9OK-450K. We find the four deep levels of E$_{1}$, E$_{2}$(248meV), E$_{3}$(386meV) and E$_{4}$(618meV) in GaP, which has composition of Ga in In$_{1-x}$ Ga$_{x}$P is one, and the trap densities of E$_{3}$ and E4 levels were 7.5*10$^{14}$ cm$^{-3}$ and 9*10$^{14}$ cm$^{-3}$ , respectively. A broad deep level spectra was revealed in In$_{1-x}$ Ga$_{x}$P whose composition of Ga, x, were 0.56 and 0.83, and the activation energy and trap densities were about 430meV and 6*10$^{14}$ cm$^{-3}$ , respectively.ectively.

  • PDF